
Excavating the knowledge of the ancestors

What we can learn today from the lost wisdom of earlier days




Uwe Friedrichsen (codecentric AG) – Berlin Expert Days – Berlin, 21. September 2017




Uwe Friedrichsen



IT traveller.

Connecting the dots.

Attracted by uncharted territory.

CTO at codecentric.




https://www.slideshare.net/ufried

https://medium.com/@ufried
 @ufried




IT these days ...




An IT solution from the outside ...




... and from the inside




And how do we address this situation?




Let us add some new & cool stuff ...




... as anything old is useless crap




Still, some treasuries can be excavated




Opening thought




Computation and State Machines



by Leslie Lamport










[Lam 2008]




“For quite a while, I’ve been disturbed by the emphasis on language in 
computer science. One result of that emphasis is programmers who are C++ 
experts but can’t write programs that do what they’re supposed to.



The typical computer science response is that programmers need to use the 
right programming/specification/development language instead of/in addition 
to C++. The typical industrial response is to provide the programmer with 
better debugging tools, on the theory that we can obtain good programs by 
putting a monkey at a keyboard and automatically finding the errors in its code.



I believe that the best way to get better programs is to teach programmers 
how to think better. Thinking is not the ability to manipulate language; it’s 
the ability to manipulate concepts. Computer science should be about 
concepts, not languages.”




[Lam 2008]




•  A programming language is just a means to an end


•  Programming and reasoning (about a solution) are different tasks


•  A Programming language may constrain your reasoning


•  Creating a good solution is not about programming languages


•  You may still love your favorite programming language ... ;)




•  The best programming language will not fix a poor design


•  Debuggers and other tools will not create good solutions magically


•  Creating a good solution is about understanding the domain first,�
then a lot about reasoning (finding abstractions, interfaces, etc.)


•  Do not rely on tools to solve problems – rely on our skills




Being too close to the implementation 
may obstruct your view on the solution




You can’t see the whole picture in your IDE




System and interface design




Go To Statement Considered Harmful



by Edsger W. Dijkstra










[Dij 1968]




“My first remark is that, although the programmer's activity ends when he has 
constructed a correct program, the process taking place under control of his 
program is the true subject matter of his activity, for it is this process that has 
to accomplish the desired effect; it is this process that in its dynamic behavior 
has to satisfy the desired specifications. [...]



My second remark is that our intellectual powers are rather geared to master 
static relations and that our powers to visualize processes evolving in time 
are relatively poorly developed. For that reason we should do (as wise 
programmers aware of our limitations) our utmost to shorten the conceptual 
gap between the static program and the dynamic process, to make the 
correspondence between the program (spread out in text space) and the 
process (spread out in time) as trivial as possible.”




[Dij 1968]




Value
Developer
 Source Code


Create
 Create


Runtime Process


Create


Reason


What we actually 
try to do


Reason


What we need 
to do instead


We are poor in 
understanding that


That creates the 
(customer) value


This needs to be

•  as comprehensible 

as possible and

•  support us in 

reasoning about 
runtime behavior




Insights for today




•  Make your design and code as understandable as possible


•  Reason about a good and comprehensible modularization


•  Reason about module groupings and hierarchies


•  Create egoless code


•  Augment with additional documentation where helpful


•  Always have the reader of your design and code in mind




On the criteria to be�
used in decomposing�
systems into modules



by David L. Parnas






[Par 1972]




“The effectiveness of a ‘modularization’ is dependent upon the criteria used in 
dividing the system into modules.”




“The second decomposition was made using "information hiding" as a 
criterion. [...] Every module in the second decomposition is characterized by 
its knowledge of a design decision which it hides from all others. Its 
interface or definition was chosen to reveal as little as possible about its 
inner workings.”




“There are a number of design decisions which are questionable and likely to 
change under many circumstances. [...] By looking at these changes we can 
see the differences between the two modularizations.”






[Par 1972]




Separation of concerns




One concept/decision per module


Information hiding




Reveal as little as possible about

internal implementation


+


Better changeability




Changes are kept local


Independent teams




Teams can easier work 
independently on different modules


Easier to comprehend




Modules can be understood on 
their own easier














“If we give that title a slight twist –

‘On the criteria to be used in decomposing systems into services’ –

it’s easy to see how this 45-year old paper

can speak to contemporary issues.”


















https://blog.acolyer.org/2016/09/05/on-the-criteria-to-be-used-in-decomposing-systems-into-modules/




Insights for today



•  Enforce Separation of concerns


•  Understand the main change drivers to identify the 
appropriate concerns to be encapsulated


•  Still, that is not the only encapsulation criterion


•  Work hard to provide a minimal interface


•  Client-driven contracts can help


•  “Less is more”




Information distribution aspects

of design methodology�


by David L. Parnas








[Par 1971]




“The connections between modules are the assumptions which the modules 
make about each other. In most systems we find that these connections are 
much more extensive than the calling sequences and control block formats 
usually shown in system structure descriptions.



We now consider making a change in the completed system. [...] We may 
make only those changes which do not violate the assumptions made by other 
modules about the module being changed. In other words, a single module 
may be changed only as long as the ‘connections’ still ‘fit’. Here, too, we have 
a strong argument for making the connections contain as little information as 
possible.”












[Par 1971]




The emperor’s old clothes�


by Sir Charles Anthony Richard Hoare










[Hoa 1981]




“I conclude that there are two ways of constructing a software design: One 
way is to make it so simple that there are obviously no deficiencies and the 
other way is to make it so complicated that there are no obvious 
deficiencies. The first method is far more difficult.



At first I hoped that such a technically unsound project would collapse but I 
soon realized it was doomed to success. Almost anything in software can be 
implemented, sold, and even used given enough determination. There is 
nothing a mere scientist can say that will stand against the flood of a hundred 
million dollars. But there is one quality that cannot be purchased in this way - 
and that is reliability. The price of reliability is the pursuit of the utmost 
simplicity. It is a price which the very rich find most hard to pay.”








[Hoa 1981]




Insights for today




•  It is easy to create an overly complex solution,�
but it is very hard to create a simple solution


•  Reliability requires simplicity


•  Work hard for easy to grasp concepts


•  Do not confuse “simple” with YAGNI


•  “Everything should be made as simple as possible, but not 
any simpler” – Albert Einstein


•  Make it hard to misuse your solution / design / API




The tar pit�


by Frederick P. Brooks, Jr.



(taken from the “The mythical man-month”)







[Bro 1995]










“One occasionally reads newspaper accounts of how two programmers in a 
remodeled garage have built an important program that surpasses the best 
efforts of large teams. And every programmer is prepared to believe such 
tales, for he knows that he could build any program much faster than the 1000 
statements/year reported for industrial teams.



Why then have not all industrial programming teams been replaced by 
dedicated garage duos? One must look at what is being produced.”












[Bro 1995]




1x
Program

The original module, 

suitable for the context 
it was created for


3x
Programming 
Product


A generalized module, 
suitable for multiple 

contexts


A module, ready to be 
used in an ecosystem 
of interacting modules


A (re-)usable module, 
that provides a general 
solution for a problem


3x
Programming 
System


9x
Programming 
Systems 
Product




1x
Program


9x
Programming 
Systems 
Product


Completeness of functionality




•  Hardening implementation

•  Handling of edge cases

•  Thorough testing

•  Design Documentation


Completeness of accessibility




•  Precise interface definition

•  Clear behavioral contract

•  Thorough integration (or alike) testing

•  API Documentation




Replace the following terms in your mind:




•  Program with (Micro)Service


•  Programming Product with Robust Service


•  Programming System with Robust API


•  Programming Systems Product with Robust and re-usable Service incl. API




Now you should see when it is worth going the whole 9 yards




Wrapping up




System and interface design




•  Make your design and code as understandable as possible


•  Enforce Separation of concerns


•  Work hard to provide a minimal interface


•  Reliability requires simplicity


•  Creating a robust service requires a lot of hard work


•  Creating a good API requires a lot of hard work




Options and trade-offs




The 5 minute rule�


by Jim Gray and Franco Putzolu










[Gra 1986]




“One interesting question is: When does it make economic sense to make a 
piece of data resident in main memory and when does it make sense to have it 
resident in secondary memory (disc) where it must be moved to main memory 
prior to reading or writing?



Pages referenced every five minutes should be memory resident.



The 80-20 rule implies that about 80% of the accesses go to 20% of the data, 
and 80% of the 80% goes to 20% of that 20%. So 64% of the accesses go to 
just 4% of the database. Keeping that 4% of the database in the main memory 
disc cache saves 64% of the disc accesses over the all-on-disc design. [...] 
This is a net 270K$ savings over the all-on-disc design and a 1.27M$ savings 
over the all-in-main-memory design.”






[Gra 1986]




The 5 minute rule 10 years later�


•  5 minute rule still applies, but for 8KB pages instead of 1KB pages�

(due to a different technology and price ratio)


•  “one-minute-sequential rule: [...] sequential operations should use main 
memory to cache data if the algorithm will revisit the data within a minute.”




[Gra 1997]


The 5 minute rule 20 years later�


•  5 minute rule still applies, but for 64KB pages instead of 8KB pages�

(due to a different technology and price ratio)


•  or an alternative 5 minute rule differentiating RAM, Flash and SATA:�
RAM-Flash for 4KB pages / Flash-SATA for 256KB pages




[Gra 2009]




Insights for today







•  Validate your assumptions using models and data


•  Heuristics can help to create options faster and better


•  The best options often are not “all” or “nothing”


•  Balanced hybrid solutions often provide the highest value


•  Re-validate your heuristics once in a while


•  New technologies create completely new options & trade-offs




Distributed systems




A short history of popular distributed system approaches


DCE/RPC


1980
 1990
 2000
 2010
 2020


CORBA
 EJB/

DCOM
 SOA
 Microservices
(REST)




Common pattern



1.  Distributed systems are too complex for our developers


2.  Let us hide the complexity behind some infrastructure


3.  Provide interfaces that pretend local communication


4.  Let the developers act as if they were implementing�
a local application


5.  Let the infrastructure handle the complexities�
of distributed systems




Developer


Promises 
deterministic 

behavior


Local facade & 
infrastructure


“Everything will 
be fine!”


Distributed runtime


“Hold my�
beer!”


Delivers�
non-deterministic 

behavior
Will break the 
promise




A note on distributed computing�


by Jim Waldo et al.










[Wal 1994]




“Differences in latency, memory access, partial failure, and concurrency 
make merging of the computational models of local and distributed 
computing [...] unable to succeed.



Merging the models by making local computing follow the model of distributed 
computing would [...] make local computing far more complex than is 
otherwise necessary.



Merging the models by attempting to make distributed computing follow the 
model of local computing requires ignoring the different failure modes and 
basic indeterminacy inherent in distributed computing, leading to systems that 
are unreliable and incapable of scaling beyond small groups of machines 
that are geographically co-located and centrally administered.”






[Wal 1994]




Insights for today




•  Distributed systems introduce non-determinism regarding


•  Execution completeness


•  Message ordering


•  Communication timing


•  You will be affected by this at the application level


•  Don’t expect your infrastructure to hide all effects from you


•  Better have a plan to detect and recover from inconsistencies




Time, clocks, and the ordering of

events in a distributed system�


by Leslie Lamport








[Lam 1978]






“In a distributed system, it is sometimes impossible to say that one of two 
events occurred first. The relation "happened before" is therefore only a partial 
ordering of the events in the system. We have found that problems often arise 
because people are not fully aware of this fact and its implications.”



“However, if a system is to meet a specification correctly, then that 
specification must be given in terms of events observable within the system. If 
the specification is in terms of physical time, then the system must contain 
real clocks. Even if it does contain real clocks, there is still the problem that 
such clocks are not perfectly accurate and do not keep precise physical 
time.”








[Lam 1978]




Insights for today




•  Do not rely on total ordering of events in your applications


•  Events can be concurrent


•  Messages can arrive out of order


•  Do not rely on real clocks in distributed systems


•  Clock drift and skew can deceive you even in times of NTP


•  Try to be independent of strict order and time




Impossibility of distributed consensus

with one faulty process�


by Michael J. Fischer et al.








[Fis 1985]






“Reaching the type of agreement needed [...] is straightforward if the 
participating processes and the network are completely reliable. However, real 
systems are subject to a number of possible faults, such as process crashes, 
network partitioning, and lost, distorted, or duplicated messages.”



“We do not consider Byzantine failures, and we assume that the message 
system is reliable – it delivers all messages correctly and exactly once. 
Nevertheless, even with these assumptions, the stopping of a single process 
at an inopportune time can cause any distributed commit protocol to fail to 
reach agreement.”










[Fis 1985]




Insights for today



•  Do not implicitly assume a reliable system


•  Crashes and partitioning happen


•  Messages can be lost, distorted or arrive multiple times


•  Be aware that many problems are hard or insolvable


•  Don’t think “That cannot be that hard” without proof


•  Especially consensus and consistency are tricky issues




Towards robust distributed systems�


by Dr. Eric A. Brewer










[Bre 2000]




“Classic distributed systems [research] focus on the computation, not the data.�
This is wrong, computation is the easy part.”



“DBMS research is about ACID (mostly). But we forfeit ‘C’ and ‘I’ for availability, 
graceful degradation, and performance.



This tradeoff is fundamental.



BASE:

•  Basically Available

•  Soft-state

•  Eventual consistency”








[Bre 2000]




ACID




•  Strong consistency

•  Isolation

•  Focus on “commit”

•  Nested transactions

•  Availability?

•  Conservative (pessimistic)

•  Difficult evolution (e.g. schema)


BASE




•  Weak consistency (stale data OK)

•  Availability first

•  Best effort

•  Approximate answers OK

•  Aggressive (optimistic)

•  Simpler!

•  Faster

•  Easier evolution


But I think it’s a spectrum


[Bre 2000]




C

Consistency


A

Availability


P

Tolerance to


network Partitions


Theorem:�
You can have at most two �

of these properties�
for any shared-data system




Building on quicksand�


by Pat Helland and Dave Campell










[Hel 2009]




“Arguably, all computing really falls into three categories: memories, guesses, 
and apologies.



The idea is that everything is done locally with a subset of the global 
knowledge. You know what you know when an action is performed. Since you 
have only a subset of the knowledge, your actions are really only guesses.



When your knowledge as a replica increases, you may have an “Oh, crap!” 
moment. Reconciling your actions (as a replica) with the actions of an evil-twin 
of yours may result in recognition that there’s a mess to clean up. That may 
involve apologizing for your behavior (or the behavior of a replica).”










[Hel 2009]




Detection


Current 
knowledge


updates


Activity


triggers


updates

Compensation 

decision


causes


triggers


causes


observes


observes


Event
...


Memory
 Guesses


This part we usually implement assuming

a perfect global knowledge in each node


Decision

causes


uses


Apologies


This part we usually 
do not implement


Incomplete & 
out-of-order


...

affects















“In a loosely coupled world choosing

some level of availability over consistency,


it is best to think of all computing as

memories, guesses, and apologies.”









[Hel 2009]




Wrapping up




Distributed systems




•  Non-determinism of distributed systems changes everything


•  Traditional deterministic thinking not sufficient anymore


•  Effects of distribution cannot be hidden (or ignored)


•  Simple problems can be hard in distributed environments


•  Understand your options and trade-offs (really!)


•  Think in concepts like memory, guesses and apologies




Complexity and system design




Systemantics�


by John Gall










[Gal 1975]








“If anything can go wrong, it will.” (Murphy's law)





“Complex systems exhibit unexpected behavior.” (Generalized uncertainty 
principle)





“A large system, produced by expanding the dimensions of a smaller system, 
does not behave like the smaller system.” (Climax design theorem)












[Gal 1975]










“A complex system that works is invariably found to have evolved from a 
simple system that worked. (Working complex systems axiom)



The parallel proposition also appears to be true:



A complex system designed from scratch never works and cannot be made 
to work. You have to start over, beginning with a working simple system.”














[Gal 1975]



















“Destiny is largely a set of unquestioned assumptions.”









[Gal 1975]




How complex systems fail�


by Richard I. Cook










[Coo 1998]




“Catastrophe requires multiple failures – single point failures are not 
enough.

[...] Overt catastrophic failure occurs when small, apparently innocuous failures 
join to create opportunity for a systemic accident. Each of these small failures 
is necessary to cause catastrophe but only the combination is sufficient to 
permit failure.”



“Complex systems run in degraded mode.

[...] complex systems run as broken systems. The system continues to 
function because it contains so many redundancies and because people can 
make it function, despite the presence of many flaws.”










[Coo 1998]








“Post-accident attribution accident to a ‘root cause’ is fundamentally wrong.

Because overt failure requires multiple faults, there is no isolated ‘cause’ of an 
accident. There are multiple contributors to accidents. [...] Indeed, it is the 
linking of these causes together that creates the circumstances required for 
the accident. Thus, no isolation of the ‘root cause’ of an accident is possible. 
The evaluations based on such reasoning as ‘root cause’ do not reflect a 
technical understanding of the nature of failure but rather the social, cultural 
need to blame specific, localized forces or events for outcomes.”










[Coo 1998]




“Hindsight biases post-accident assessments of human performance.

Knowledge of the outcome makes it seem that events leading to the outcome 
should have appeared more salient to practitioners at the time than was 
actually the case. This means that ex post facto accident analysis of human 
performance is inaccurate.”



“Safety is a characteristic of systems and not of their components

Safety is an emergent property of systems; it does not reside in a person, 
device or department of an organization or system. Safety cannot be 
purchased or manufactured; it is not a feature that is separate from the other 
components of the system.”










[Coo 1998]




No silver bullet�


by Frederick P. Brooks, Jr.










[Bro 1986]










“I divide [the difficulties of software technology] into essence, the difficulties 
inherent to the nature of software, and accidents, those difficulties that today 
attend its production but are not inherent.”





“Let us consider the inherent properties of this irreducible essence of modern 
software systems: complexity, conformity, changeability and invisibility.”














[Bro 1986]




Out of the tar pit�


by Ben Moseley and Peter Marks










[Mos 2006]










“Complexity is the root cause of the vast majority of problems with software 
today. Unreliability, late delivery, lack of security — often even poor 
performance in large-scale systems can all be seen as deriving ultimately from 
unmanageable complexity. The primary status of complexity as the major 
cause of these other problems comes simply from the fact that being able to 
understand a system is a prerequisite for avoiding all of them, and of course it 
is this which complexity destroys.”














[Mos 2006]




“[...] it is our belief that the single biggest remaining cause of complexity in 
most contemporary large systems is state, and the more we can do to limit 
and manage state, the better.



Control is basically about the order in which things happen. [...] Most 
traditional programming languages do force a concern with ordering [...] The 
difficulty is that when control is an implicit part of the language [...], then every 
single piece of program must be understood in that context [...]



The final cause of complexity that we want to examine in any detail is sheer 
code volume. [...] in most systems complexity definitely does exhibit 
nonlinear increase with size (of the code). This non- linearity in turn means 
that it’s vital to reduce the amount of code to an absolute minimum.”






[Mos 2006]




“Finally there are other causes [...] All of these other causes come down to the 
following three (inter-related) principles:



•  Complexity breeds complexity: [...] This covers all complexity introduced as 

a result of not being able to clearly understand a system. [...] This is 
particularly true in the presence of time pressures.


•  Simplicity is Hard: [...] Simplicity can only be attained if it is recognized, 
sought and prized.


•  Power corrupts: [...] in the absence of language-enforced guarantees 
mistakes (and abuses) will happen. [...] The bottom line is that the more 
powerful a language (i.e. the more that is possible within the language), the 
harder it is to understand systems constructed in it.”







[Mos 2006]




“Hence we define the following two types of complexity:



•  Essential Complexity is inherent in, and the essence of, the problem (as 

seen by the users).

•  Accidental Complexity is all the rest — complexity with which the 

development team would not have to deal in the ideal world (e.g. 
complexity arising from performance issues and from suboptimal language 
and infrastructure).




When it comes to accidental and essential complexity we firmly believe that 
the former exists and that the goal of software engineering must be both to 
eliminate as much of it as possible, and to assist with the latter.”






[Mos 2006]




Wrapping up




Complexity and system design




•  Complexity is hard


•  Hard to understand, exhibits unexpected behavior


•  Cannot be designed from scratch, but must evolve


•  Exhibits complex failure modes


•  Distinguish essential and accidental complexity


•  Essential complexity is needed to solve the problem


•  Accidental complexity is everything else – try hard to avoid it




Closing thought




How to use conscious purpose

without wrecking everything�


by John Gall








[Gal 2012]
















“I think that in this one play [Faust] Goethe has posed a core problem for 
modern man — namely: being in possession of the powerful tool of 
conscious thought, how to use it without wrecking everything.”






[Gal 2012]




The humble programmer�


by Edsger W. Dijkstra










[Dij 1972]












“We shall do a much better programming job, provided that we will approach 
the task with a full appreciation of its tremendous difficulty, provided that we 
stick to modest and elegant programming languages, provided that we 
respect the intrinsic limitation of the human mind and approach the tasks as 
Very Humble Programmers.”


















[Dij 1972]












“We shall do a much better programming job, provided that we will approach 
the task with a full appreciation of its tremendous difficulty, provided that we 
stick to modest and elegant programming languages, provided that we 
respect the intrinsic limitation of the human mind and approach the tasks as 
Very Humble Programmers.”


















[Dij 1972]


software engineering


Software Engineers


fit-for-purpose tools




Resources




References (1/5)




[Bre 2000] Eric A. Brewer, "Towards robust distributed 
systems", Keynote, Symposium on Principles of Distributed 
Computing (PODC) 2000


[Bro 1986] Frederick P. Brooks, jr., “No silver bullet”, from H.-J. 
Kugler (ed.), "Information Processing 1986: World Congress 
Proceedings (IFIP congress series, vol 10)", 1986


[Bro 1995] Frederick P. Brooks, jr., “The tar pit”, from “The 
mythical man-month”, anniversary edition 1995


[Coo 1998] Richard I. Cook, "How complex systems fail", 
Cognitive technologies Laboratory, University of Chicago, 1998




References (2/5)




[Dij 1968] Edsger W. Dijkstra, “Go to statement considered 
harmful”, Communications of the ACM, Vol. 11, No. 3, March 
1968, pp. 147-148


[Dij 1972] Edsger W. Dijkstra, “The humble programmer”, 
Communications of the ACM, Vol. 15, No. 10, October 1972, pp. 
859–866


[Fis 1985] Michael J. Fischer, Nancy A. Lynch, Michael S. 
Paterson, "Impossibility of distributed consensus with one 
faulty process", Journal of the Association for Computing 
Machinery, Vol. 32, No. 2, April 1985, pp. 374-382


[Gal 1975] John Gall, "Systemantics", 1975




References (3/5)




[Gal 2012] John Gall, "How to use conscious purpose without 
wrecking everything", Gilbfest, London, UK, June 25, 2012


[Gra 1986] Jim Gray, Franco Putzolu, "The 5 minute rule for 
trading memory for disc accesses and the 5 byte rule for 
trading memory for CPU time", Tandem Computer Technical 
Report 86.1, 1986


[Gra 1997] Jim Gray, Goetz Graefe, "The five-minute rule ten 
years later, and other computer storage rules of thumb", 
Microsoft Research Technical Report MSR-TR-97-33, 1997


[Gra 2009] Goetz Graefe, "The five-minute rule 20 years later 
(and how flash memory changes the rules)", Communications 
of the ACM, Vol. 52, No. 7, July 2009, pp. 48-59




References (4/5)




[Hel 2009] Pat Helland, Dave Campbell, "Building on quicksand", 
Conference on Innovative Data Systems Research (CIDR) 2009


[Hoa 1981] Sir Charles Anthony Richard Hoare, “The emperor's 
old clothes“, Communications of the ACM, Vol. 24, No. 2, 
February 1981, pp. 75-83


[Lam 78] Leslie Lamport, "Time, clocks, and the ordering of 
events in distributed systems", Communications of the ACM, 
Vol. 21, No. 7, July 1978, pp. 558-565


[Lam 2006] Leslie Lamport, “Computation and state machines”, 
2006




References (5/5)




[Mos 2006] Ben Mosely, Peter Marks, "Out of the tar pit", 2006


[Par 1971] David L. Parnas, “Information distribution aspects of 
design methodology”, Carnegie Mellon University, Research 
Showcase @CMU, 1971


[Par 1972] David L. Parnas, “On the criteria to be used in 
decomposing systems into modules”, Communications of the 
ACM, Vol. 15, No. 12, December 1972, pp. 1053-1058 



[Wal 1994] Jim Waldo, Geoff Wyant, Ann Wollrath, Sam Kendall, 
"A note on distributed computing", Sun Microsystems 
Laboratories, Inc. TR-94-29, 1994




More papers to discover












•  Papers we love (http://paperswelove.org/)


•  The morning paper (https://blog.acolyer.org/)


•  Edsger W. Dijkstra Prize in Distributed Computing�
(https://en.wikipedia.org/wiki/Dijkstra_Prize)




Uwe Friedrichsen



IT traveller.

Connecting the dots.

Attracted by uncharted territory.

CTO at codecentric.




https://www.slideshare.net/ufried

https://medium.com/@ufried
 @ufried



