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And how do we address this situation?



vl
Y
i)
)
)
O
O
&)
od
=
O
=
3
O
P
@)
)
O
)
B )
-+
)
i |




Rt
ERAP P
s

{




—




Opening thought




Computation and State Machines

Leslie Lamport

19 April 2008

Computation and State Machines

by Leslie Lamport

[Lam 2008]



"For quite a while, I've been disturbed by the emphasis on language in
computer science. One result of that emphasis is programmers who are C++
experts but can't write programs that do what they're supposed to.

The typical computer science response is that programmers need to use the
right programming/specification/development language instead of/in addition
to C++. The typical industrial response is to provide the programmer with
better debugging tools, on the theory that we can obtain good programs by
putting a monkey at a keyboard and automatically finding the errors in its code.

| believe that the best way to get better programs is to teach programmers
how to think better. Thinking is not the ability to manipulate language; it's
the ability to manipulate concepts. Computer science should be about
concepts, not languages.”

[Lam 2008]



« A programming language is just a means to an end
« Programming and reasoning (about a solution) are different tasks

« A Programming language may constrain your reasoning

« Creating a good solution is not about programming languages

« You may still love your favorite programming language ... ;)



* The best programming language will not fix a poor design

« Debuggers and other tools will not create good solutions magically
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» Creating a good solution is about understanding the domain first,
then a lot about reasoning (finding abstractions, interfaces, etc.)

« Do not rely on tools to solve problems — rely on our skills



Being too close to the implementation

may obstruct your view on the solution




You can't see the whole picture in your IDE




System and interface design
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Go To Statement Considered Harmful
Edsger W. Dijkstra

Reprinted from Communications of the ACM, Vol. 11, No. 3, March 1968, pp. 147-148.
Copyright © 1968, Association for Computing Machinery, Inc.

This is a digitized copy derived from an ACM copyrighted work. It is not guaranteed to be an
accurate copy of the author's original work.

Key Words and Phrases:
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clause, repetitive clause, program intelligibility, program sequencing

CR Categories:
4.22, 6.23,5.24

Editor:

For a number of years I have been familiar with the observation that the quality of
programmers is a decreasing function of the density of go to statements in the programs they
produce. More recently I discovered why the use of the go to statement has such disastrous
effects, and I became convinced that the go to statement should be abolished from all "higher
level" programming languages (i.e. everything except, perhaps, plain machine code). At that
time I did not attach too much importance to this discovery; I now submit my considerations
for publication because in very recent discussions in which the subject turned up, I have been
urged to do so.

My first remark is that, although the programmer's activity ends when he has constructed a
correct program, the process taking place under control of his program is the true subject
matter of his activity, for it is this process that has to accomplish the desired effect; it is this
process that in its dynamic behavior has to satisfy the desired specifications. Yet, once the
program has been made, the "making' of the corresponding process is delegated to the
machine.

My second remark is that our intellectual powers are rather geared to master static relations
and that our powers to visualize processes evolving in time are relatively poorly developed. For

Go To Statement Considered Harmful

by Edsger W. Dijkstra

[Dij 1968]



"My first remark is that, although the programmer's activity ends when he has
constructed a correct program, the process taking place under control of his
program is the true subject matter of his activity, for it is this process that has
to accomplish the desired effect; it is this process that in its dynamic behavior
has to satisfy the desired specifications. [...]

My second remark is that our intellectual powers are rather geared to master
static relations and that our powers to visualize processes evolving in time
are relatively poorly developed. For that reason we should do (as wise
programmers aware of our limitations) our utmost to shorten the conceptual
gap between the static program and the dynamic process, to make the
correspondence between the program (spread out in text space) and the
process (spread out in time) as trivial as possible.”

[Dij 1968]
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Insights for today

Make your design and code as understandable as possible

Reason about a good and comprehensible modularization
Reason about module groupings and hierarchies
Create egoless code

Augment with additional documentation where helpful

Always have the reader of your design and code in mind




Programming R. Morris

Techniques Editor
On the Criteria To Be
Used in Decomposing
Systems into Modules
D.L. Parnas
Carnegie-Mellon University

This paper di: dularization as a mechani Introducti
for improving the flexibility and comprehensibility of a
A lucid of the philosophy of modul

system while allowing the shor(cning of its developmenl
time. The effecti of a “‘modularization” is
dependent upon the criteria used in dividing the system
into modules. A system design prohlem |: presenled and
both a ional and
are described. It is shown that the unconventional
decompositions have distinct advantages for the goals
outlined. The crilerin used in arriving nl lhe decom-
positions are d d. The posi
tion, if impl d with the ional
that a module consists of one or more subroutines, will
be less efficient in most cases. An alternative approach
to implementation which does not have this effect is
sketched.
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Copyright © 1972, iation for C inery, Inc.

programming can be found in a 1970 textbook on the
design of system programs by Gouthier and Pont (1,
410.23), which we quote below:!

A well-defined segmentation of the project effort ensures
system modularity. Each task forms a separate, distinct program
module. At implementation time each module and its inputs and
outputs are well-defined, there is no confusion in the intended
interface with other system modules. At checkout time the in-
tegrity of lh: module is leslcd mdependeml). there are few sche-
duling in the of several tasks
before checkout can begin. Finally, the system is maintained in
modular fashion; system errors and deficiencies can be traced to
specific system modules, thus limiting the scope of detailed error
searching.

Usually nothing is said about the criteria to be used
in dividing the system into modules. This paper will
discuss that issue and, by means of examples, suggest
some criteria which can be used in decomposing a
system into modules.

A Brief Status Report

The major advancement in the area of modular
programming has been the development of coding
techniques and assemblers which (1) allow one module
to be written with little knowledge of the code in
another module, and (2) allow modules to be reas-

General permission to republish, but not for proﬂt. all or part
of this matenial is granted, provided that reference is made to this
publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Com-
puting Machinery.

Author’s address: Department of Computer Science, Carnegie-
Mellon University, Pittsburgh, PA 15213,

bled and replaced without bly of the whole
system. This facility is extremely valuable for the
production of large pieces of code, but the systems most
often used as ples of problem are highly-
modularized programs and make use of the techniques
mentioned above.

! Reprinted by permission of Prentice-Hall, Englewood
Cliffs, N.J.

Commumcanom December 1972
Volume 15
lhe ACM Number 12

On the criteria to be
used in decomposing
systems into modules

by David L. Parnas

[Par 1972]



“The effectiveness of a ‘modularization’ is dependent upon the criteria used in
dividing the system into modules.”

“The second decomposition was made using "information hiding" as a
criterion. [...] Every module in the second decomposition is characterized by
its knowledge of a design decision which it hides from all others. Its
interface or definition was chosen to reveal as little as possible about its
inner workings.”

“There are a number of design decisions which are questionable and likely to
change under many circumstances. [...] By looking at these changes we can
see the differences between the two modularizations.”

[Par 1972]



Separation of concerns

One concept/decision per module

_I_

Information hiding

Reveal as little as possible about
internal implementation

Better changeability

Changes are kept local

Independent teams

Teams can easier work
independently on different modules

Easier to comprehend

Modules can be understood on
their own easier



“If we give that title a slight twist —

'On the criteria to be used in decomposing systems into services' —
It's easy to see how this 45-year old paper

can speak to contemporary issues.”

https://blog.acolyer.org/2016/09/05/on-the-criteria-to-be-used-in-decomposing-systems-into-modules/



Insights for today

« Enforce Separation of concerns

« Understand the main change drivers to identify the
appropriate concerns to be encapsulated

« Still, that is not the only encapsulation criterion

« Work hard to provide a minimal interface

 Client-driven contracts can help

e “Lessis more”
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“The connections between modules are the assumptions which the modules
make about each other. In most systems we find that these connections are
much more extensive than the calling sequences and control block formats
usually shown in system structure descriptions.

We now consider making a change in the completed system. [...] We may
make only those changes which do not violate the assumptions made by other
modules about the module being changed. In other words, a single module
may be changed only as long as the ‘connections’ still ‘fit". Here, too, we have
a strong argument for making the connections contain as little information as
possible.”

[Par 1971]



The 1980 ACM Turing Award Lecture

Delivered at ACM 80, Nashville, Tennessee, October 27, 1980

The 1980 ACM Turing Award was presented to Charles Antony Richard Hoare,
Professor of Computation at the University of Oxford, England, by Walter Carlson,
Chairman of the Awards committee, at the ACM Annual Conference in Nashville,
Tennessee, October 27, 1980.

Professor Hoare was selected by the General Technical Achievement Award
Committee for his fundamental contributions to the definition and design of program-
ming languages. His work is characterized by an unusual combination of insight,
originality, elegance, and impact. He is best known for his work on axiomatic
definiti of prog ! through the use of techniques popularly
referred to as axiomatic semantics. He developed ingenious algorithms such as
Quicksort and was responsible for inventing and promulgating advanced data struc-
turing techniques in scientific programming languages. He has also made important
contributions to operating systems through the study of monitors. His most recent
work is on communicating sequential processes.

C.A.R. Hoare Prior 1o his appointment to the University of Oxford in 1977, Professor Hoare was
Professor of Computer Science at The Queen’s University in Belfast, Ireland from
1968 to 1977 and was a Visiting Professor at Stanford University in 1973, From 1960

to 1968 he held a number of positions with Elliot Brothers, Ltd., England.

Professor Hoare has published extensively and is on the editorial boards of a number of the world’s foremost
computer science journals. In 1973 he received the ACM Prog ing Sy and Languages Paper Award.
Professor Hoare became a Distinguished Fellow of the British Computer Society in 1978 and was awarded the degree
of Doctor of Science Honoris Causa by the University of Southern California in 1979,

The Turing Award is the Association for Computing Machinery's highest award for technical contributions to the )
4 ity. Itis p d cach year in commemoration of Dr. A. M. Turing, an English mathematician e e | I I p e rO r S O C O e S

| g
who made many important contrib to the g

The Emperor’s Old Clothes by Sir Charles Anthony Richard Hoare

Charles Antony Richard Hoare
Oxford University, England

The author recounts his experiences in the implemen- My first and most pleasant duty in this lecture is to
tation, design, and standardization of computer program-  express my p d gratitude to the Association for
ming languages, and issues a ing for the future. Computing Machinery for the great honor which they

have bestowed on me and for this opportunity to address

Key Words and Phrases 3 o
4 s RANE Mogritimiag laagrages you on a topic of my choice. What a difficult choice it is!

history of programming languages, lessons for the future

CR Categories: 1.2, 2.11, 4.2 My scientific achi , 50 amply ized by this
- % award, have already been amply described in the scien-
Permission 10 copy without fee all or part of this material 15 tific Li Instead of repeating the ab techni-

granted provided that the copies are not made or distributed for direct i f e ike 1k infor; g

commercial advantage, the ACM copyright notice and the tide of the  CouCS Of my trade, I would Like to talk informally about

publication and its date appear, and notice is given that copying is by ~ MYSelf, my personal experiences, my hopes and fears,
of the for Computing Machinery. To copy  my modest successes, and my rather less modest failures.

otherwise, o 10 republish, requires a fee and/or specific permission h o my failures e
At e "'C. A R. Hoare, 45 Benbury Rocd, I have learned more from my failures than can ever be

Oxford OX2 6PE, nd. revealed in the cold print of a scientific article and now [H 0Oa 1 9 8 1 ]

© 1981 ACM 0001-0782/81/0200-0075 $00.75. T'would like you to learn from them, too. Besides, failures
7 Communications February 1981
f Volume 24

o
the ACM Number 2




‘| conclude that there are two ways of constructing a software design: One
way is to make it so simple that there are obviously no deficiencies and the
other way is to make it so complicated that there are no obvious
deficiencies. The first method is far more difficult.

At first | hoped that such a technically unsound project would collapse but |
soon realized it was doomed to success. AlImost anything in software can be
implemented, sold, and even used given enough determination. There is
nothing a mere scientist can say that will stand against the flood of a hundred
million dollars. But there is one quality that cannot be purchased in this way -
and that is reliability. The price of reliability is the pursuit of the utmost
simplicity. It is a price which the very rich find most hard to pay.”

[Hoa 1981]



Insights for today

It is easy to create an overly complex solution,
but it is very hard to create a simple solution

Reliability requires simplicity
« Work hard for easy to grasp concepts

* Do not confuse “simple” with YAGN|

"Everything should be made as simple as possible, but not
any simpler” — Albert Einstein

Make it hard to misuse your solution / design / API




ANNIVERSARY EDITION WITH FOUR NEW CHAPTERS

The tar pit

by Frederick P. Brooks, Jr.

MY THICATL (taken from the “The mythical man-month”)
MAN-MONTH

FREDERICK P, BROOQOKS, JR.

[Bro 1995]




‘One occasionally reads newspaper accounts of how two programmers in a
remodeled garage have built an important program that surpasses the best
efforts of large teams. And every programmer is prepared to believe such
tales, for he knows that he could build any program much faster than the 1000
statements/year reported for industrial teams.

Why then have not all industrial programming teams been replaced by
dedicated garage duos? One must look at what is being produced.”

[Bro 1995]



The original module,
suitable for the context
it was created for

Program ——

Programming
System

A module, ready to be
used in an ecosystem
of interacting modules

A generalized module,
suitable for multiple
contexts

v

Programming
Product

- >

<______-______

Programming
Systems
Product

A (re-)usable module,
that provides a general
solution for a problem




Completeness of accessibility

* Precise interface definition

Program « Clear behavioral contract

« Thorough integration (or alike) testing
« API Documentation

Completeness of functionality

Programming
Systems
Product

« Hardening implementation
« Handling of edge cases

* Thorough testing

« Design Documentation




Replace the following terms in your mind:

Program with (Micro)Service

Programming Product with Robust Service

Programming System with Robust API

Programming Systems Product with Robust and re-usable Service incl. API

Now you should see when it is worth going the whole 9 yards



Wrapping up

System and interface design

« Make your design and code as understandable as possible
» Enforce Separation of concerns
« Work hard to provide a minimal interface

» Reliability requires simplicity

« Creating a robust service requires a lot of hard work

« Creating a good API requires a lot of hard work




Options and trade-offs




/ﬂTANDEMCOMPUTERS

The 5 Minute Rule for Trading
Memory for Disc Accesses and
the 5 Byte Rule for Trading
Memory for CPU Time

Jim Gray
Franco Putzolu

Technical Report 86.1
May 1985, Revised February 1986
PN87615

The 5 minute rule

by Jim Gray and Franco Putzolu

[Gra 1986]



‘One interesting question is: When does it make economic sense to make a
piece of data resident in main memory and when does it make sense to have it
resident in secondary memory (disc) where it must be moved to main memory
prior to reading or writing?

Pages referenced every five minutes should be memory resident.

The 80-20 rule implies that about 80% of the accesses go to 20% of the data,
and 80% of the 80% goes to 20% of that 20%. So 64% of the accesses go to
just 4% of the database. Keeping that 4% of the database in the main memory
disc cache saves 64% of the disc accesses over the all-on-disc design. |[...]
This is a net 270KS savings over the all-on-disc design and a 1.27MS savings

over the all-in-main-memory design.”

[Gra 1986]



Jim Gesy

practice
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The Five-
Minute Rule
20 Years Later

(and How Flash Memory
Changes the Rules)

The 5 minute rule 10 years later

« 5 minute rule still applies, but for 8KB pages instead of 1KB pages
(due to a different technology and price ratio)

« "one-minute-sequential rule: [...] sequential operations should use main
memory to cache data if the algorithm will revisit the data within a minute.”

[Gra 1997]

The 5 minute rule 20 years later

« 5 minute rule still applies, but for 64KB pages instead of 8KB pages
(due to a different technology and price ratio)

« oran alternative 5 minute rule differentiating RAM, Flash and SATA:
RAM-Flash for 4KB pages / Flash-SATA for 256KB pages

[Gra 2009]



Insights for today

 Validate your assumptions using models and data
» Heuristics can help to create options faster and better

» The best options often are not “all” or “"nothing”

« Balanced hybrid solutions often provide the highest value
« Re-validate your heuristics once in a while

* New technologies create completely new options & trade-offs




Distributed systems




A short history of popular distributed system approaches

DCE/RPC CORBA ooy SOA  (REsT)  Microservices

1980 1990 2000 2010 2020



Common pattern

1. Distributed systems are too complex for our developers
2. Let us hide the complexity behind some infrastructure
3. Provide interfaces that pretend local communication

4. Letthe developers act as if they were implementing
a local application

5. Lettheinfrastructure handle the complexities
of distributed systems




“Everything will “‘Hold my w

be fine!” beer!”
< <
i Local facade & i o .
Developer - . - Distributed runtime

! infrastructure !

Promises Delivers

deterministic < non-deterministic
behavior Will break the behavior

promise



A Note on Distributed Computing

Jim Waldo

Geoff Wyant
Ann Wollrath
Sam Kendall

SMLI TR-94-29 November 1994

Abstract:

We argue that objects that interact in a distributed system need to be dealt with in ways that are
intrinsically different from objects that interact in a single address space. These differences are
required because distributed systems require that the programmer be aware of latency, have a dif-
ferent model of memory access, and take into account issues of concurrency and partial failure.

We look at a number of distributed systems that have attempted to paper over the distinction
between local and remote objects, and show that such systems fail to support basic requirements
of robustness and reliability. These failures have been masked in the past by the small size of the
distributed systems that have been built. In the enterprise-wide distributed systems foreseen in the

near future, however, such a masking will be impossible.

We conclude by discussing what is required of both systems-level and application-level program-

mers and designers if one is to take distribution seriously.

& Sun Microsystems
Laboratories, Inc.
MJS 29-01

2550 Garcia Avenue
Mountain View, CA 94043

email addresses:
jim.waldo@east sun.com
geoff wyant@east sun com
ann.wollrath@ecast sun com
sam kendall@cast sun.com

A note on distributed computing

by Jim Waldo et al.

[Wal 1994]



‘Differences in latency, memory access, partial failure, and concurrency
make merging of the computational models of local and distributed
computing [...] unable to succeed.

Merging the models by making local computing follow the model of distributed
computing would [...] make local computing far more complex than is
otherwise necessary.

Merging the models by attempting to make distributed computing follow the
model of local computing requires ignoring the different failure modes and
basic indeterminacy inherent in distributed computing, leading to systems that
are unreliable and incapable of scaling beyond small groups of machines
that are geographically co-located and centrally administered.”

[Wal 1994]



Insights for today

 Distributed systems introduce non-determinism regarding
« Execution completeness
* Message ordering

« Communication timing

* You will be affected by this at the application level
« Don't expect your infrastructure to hide all effects from you

» Better have a plan to detect and recover from inconsistencies




Operating R. Stockton Gaines
Systems Editor

Time, Clocks, and the
Ordermg of Events in
a Distributed System

Leslie Lamport
Massachusetts Computer Associates, Inc.

The pt of one event happening before another
in a distributed system is examined, and is shown to
define a partial ordering of the events. A distributed
algorithm is given for synchronizing a system of logical
clocks which can be used to totally order the events.
The use of the total ordering is illustrated with a
method for solving synchronization problems. The
algorithm is then specialized for synchronizing physical
clocks, and a bound is derived on how far out of
synchrony the clocks can become.

Key Words and Phrases: dis(ribu!ed \ys(ems.
computer networks, clock sy process
systems

CR Categories: 4.32,5.29

Introduction

The concept of time is fundamental to our way of
thinking. It is derived from the more basic concept of
the order in which events occur. We say that something
happened at 3:15 if it occurred after our clock read 3:15
and before it read 3:16. The concept of the temporal
ordering of events pervades our thinking about systems.
For example, in an airline reservation system we specify
that a request for a reservation should be granted if it is
made before the flight is filled. However, we will see that
this concept must be carefully reexamined when consid-
ering events in a distributed system.

General permission to make fair use in teaching or research of all
or part of this material is granted to individual readers and to nonprofit
libraries acting for them provided that ACM's copyright notice is given
and that reference is made to the publication, to its date of issue, and
to the fact that reprinting privileges were granted by permission of the
Association for Computing Machinery. To otherwise reprint a figure,
table, other substantial excerpt, or the entire work requires specific

A distributed system consists of a collection of distinct
processes which are spatially separated, and which com-
municate with one another by exchanging messages. A
network of interconnected computers, such as the ARPA
net, is a distributed system. A single computer can also
be viewed as a distributed system in which the central
oomrol unit, the memory units, and the mpu( output

Is are p . A system is distributed
if the message lrammlssxon delay is not negligible com-
pared to the time between events in a single process.

We will concern ourselves pnmanly with systems of
spatially sef , many of our
remarks will apply more gcnerally In particular, a mul-
tiprocessing system on a single computer involves prob-
lems similar to those of a distributed system because of
the unpredictable order in which certain events can
oceur.

In a distributed system, it is sometimes impossible to
say that one of two events occurred first. The relation
“happened before” is therefore only a partial ordering
of the events in the system. We have found that problems
often arise because people are not fully aware of this fact
and its implications.

In this paper, we discuss the partial ordering defined
by the “happened before™ relation, and give a distributed
algorithm for extending it to a consistent total ordering
of all lhe events. Thls algorithm can provide a useful

for i ing a distributed system. We
|Iluslrale its use wuh a slmple me(hod for solving syn-
lous behav-

ior can occur if the ordering obtained by this algorithm
differs from that perceived by the user. This can be
avoided by introducing real, physical clocks. We describe
a simple method for synchronizing these clocks, and
derive an upper bound on how far out of synchrony they
can drift.

The Partial Ordering

Most people would probably say that an event a
happened before an event b if @ happened at an carlier
time than b. They might justify this definition in terms
of physical theories of time. However, if a system is to
meet a specification correctly, then that specification
must be given in terms of events observable within the
system. If the specification is in terms of physical time,
then the system must contain real clocks. Even if it does
contain real clocks, there is still the problem that such
clocks are not perfectly accurate and do not keep precnse
physical time. We will therefore define the “hay
before™ relation without using physical clocks.

as does rep or sy or multiple reprod;

tion.

This work was supported by the Advanced Research Projects
Agency of the Department of Defense and Rome Air Development
Center. It was monitored by Rome Air Development Center under
contract number F 30602-76-C-0094,

Author's address: Computer Science Laboratory. SRI Interna-
tional, 333 Ravenswood Ave, Menlo Park CA 94025,
© 1978 ACM 0001-0782/78/0700-0558 $00.75

558

We begin by defining our system more precisely. We
assume that the system is composed of a collection of
Each process ists of a seq| of events.
Dcpcndmg upon the application, the execution of a
subprogram on a computer could be one event, or the
execution of a single machine instruction could be one

Communications July 1978
of Volume 21
the ACM Number 7

Time, clocks, and the ordering of

events in a distributed system

by Leslie Lamport

[Lam 1978]



‘In a distributed system, it is sometimes impossible to say that one of two
events occurred first. The relation "happened before” is therefore only a partial
ordering of the events in the system. We have found that problems often arise
because people are not fully aware of this fact and its implications.”

"However, if a system is to meet a specification correctly, then that
specification must be given in terms of events observable within the system. If
the specification is in terms of physical time, then the system must contain
real clocks. Even if it does contain real clocks, there is still the problem that
such clocks are not perfectly accurate and do not keep precise physical
time.”

[Lam 1978]



Insights for today

« Do not rely on total ordering of events in your applications
- Events can be concurrent

« Messages can arrive out of order

* Do not rely on real clocks in distributed systems

« Clock drift and skew can deceive you even in times of NTP

 Try to be independent of strict order and time




Impossibility of Distributed Consensus with One Faulty
Process

MICHAEL J. FISCHER

Yale University, New Haven, C¢

NANCY A. LYNCH

Massachusetts Institute of Technology, Cambridge, Massachusetts
AND

MICHAEL S. PATERSON

University of Warwick, Coventry, England

Abstract. The b h system of some of which may be

unreliable. The problem is for the nlubk prmcs to agree on a binary value. In this paper, it is shown

that every protocol for this problem has the possibility of nontermination, even with only one faulty
ine Generals™

process. By way of contrast, solutions are known for the h case, the “By

problem.

Categories lnd Subject Descri C.22[C C ion N ks]: Network P )

protocol C24 [C C, e J: Distrib ,c_. Posncand
licati distributed datab network op ng systems; C.4 [Performance o(Syﬂems] Reliabil-

ity, Avmlablmy. and Serviceability; F.1.2 [Ccmptmdu by Abstnci Devices]): Modes of Computation-

P H.2.4 [Database M ibuted systems;, transaction processing

General Terms: Algorithms, Reliability, Theory

Additional Key Words and Phrases: Agr system, ine Generals

commit probl bl istributed ing, fault tok i ibility
prool‘ reliability

1. Introduction

The problem of reaching agreement among remote processes is one of the most
fundamental problems in distributed computing and is at the core of many

Editing of this paper was performed by guest editor S. L. Graham. The Editor-in-Chicf of JACM did
not participate in the processing of the paper.

This work was supported in part by the Office of Naval Research under Contract N00014-82-K-0154,
by the Office of Army Research under Contract DAAG29-79-C-0155, and by the National Science
Foundation under Grants MCS-7924370 and MCS-8116678.

This work was originally presented at the 2nd ACM Symposium on Principles of Database Systems,
March 1983.

Authors’ present addresses: M. J. Fischer, Department of Computer Science, Yale University, P.O. Box
2158, Yalesuuon. New Haven, CT 06520; N. A. Lynch, L y for Ce Science,

setts | of Technol 545 Technology Square, C: i MA 02139; M. S. Paterson, Depart-
ment of Computer Science, University of Warwick, Coventry CV4 7AL, England

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
© 1985 ACM 0004-5411/85/0400-0374 $00.75

Journal of the Association for Computing Machinery, Vol. 32, No. 2, April 1985, pp. 374-382.

Impossibility of distributed consensus

with one faulty process

by Michael J. Fischer et al.

[Fis 1985]



‘Reaching the type of agreement needed |...] is straightforward if the
participating processes and the network are completely reliable. However, real
systems are subject to a number of possible faults, such as process crashes,
network partitioning, and lost, distorted, or duplicated messages.”

“We do not consider Byzantine failures, and we assume that the message
system is reliable — it delivers all messages correctly and exactly once.
Nevertheless, even with these assumptions, the stopping of a single process
at an inopportune time can cause any distributed commit protocol to fail to
reach agreement.’

[Fis 1985]



Insights for today

» Do not implicitly assume a reliable system
« Crashes and partitioning happen

« Messages can be lost, distorted or arrive multiple times

« Be aware that many problems are hard or insolvable
« Don't think “That cannot be that hard” without proof

» Especially consensus and consistency are tricky issues




Towards Robust
Distributed Systems

Towards robust distributed systems

) by Dr. Eric A. Brewer
Dr. Eric A. Brewer y

Professor, UC Berkeley
Co-Founder & Chief Scientist, Inktomi

PODC Keynote, July 19, 2000

[Bre 2000]



“‘Classic distributed systems [research] focus on the computation, not the data.
This is wrong, computation is the easy part.”

‘DBMS research is about ACID (mostly). But we forfeit ‘C" and I' for availability,
graceful degradation, and performance.

This tradeoff is fundamental.

BASE:

« Basically Available

« Soft-state

« Eventual consistency”

[Bre 2000]



ACID

« Strong consistency
* |solation

* Focus on ‘commit’
« Nested transactions

BASE

« Weak consistency (stale data OK)
« Availability first

« Best effort

« Approximate answers OK

« Availability? « Aggressive (optimistic)
« Conservative (pessimistic) « Simpler!
« Difficult evolution (e.g. schema) « Faster

e FEasier evolution

But I think it's a spectrum >

[Bre 2000]



C A

Consistency Availability

Theorem:
You can have at most two
of these properties
D for any shared-data system

Tolerance to
network Partitions



Building on Quicksand

Pat Helland
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052 USA

PHelland@Microsoft.com

ABSTRACT

Reliable systems have always been built out of unreliable
components [1]. Early on, the reliable components were small
such as mirrored disks or ECC (Error Correcting Codes) in core
memory. These syslcms were designed such that failures of these

small to the application. Later, the
size of the unrelnblc components grew larger and semantic
hall crept into the application when failures occurred.

Fault tolerant algorith isc a set of id sub-

algorithms. Between these mcmpolml suh-algonlhm state is
of the

Dave Campbell
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052 USA

DavidC@Microsoft.com

Keywords
Fault Tolerance, Eventual Consistency, Reconciliation,
Loose Coupling, Transactions

1. Introduction

There is an interesting connection between fault tolerance,
offlincable systems, and the need for application-based eventual
consistency. As we attempt to run our large scale applications
spread across many systems, we cannot afford the latency to wait
for a backup system to remain in synch with the system actually
ing the work. This causes the server systems to look

sent across the failure

The failure of an unreliable component can then be tolerated as a

takeover by a backup, which uses the Iul k:nown state and dnvcs
Classi

increasingly like offlineable client applications in that they do not
know the authoritative truth. In twm, these server-based
ions are designed to record their intentions and allow the

forward with a retry of the idemp

this has been done in a linear fashion (|.e. one step at a time).

As the larity of the i grows (from a
mirrored disk 1o a system to a data cemzr) the latency to
communicate with a backup becomes unpalatable. This leads to a
more relaxed model for fault tolerance. The primary system will
acknowledge the work request and its actions without waiting to
ensure that the backup is notified of the work. This improves the
responsiveness of the system because the user is not delayed
behind a slow interaction with the backup.

Tlu:n: are two |mpl|enuons of asynchrolwus state capture:

1) . There is
nlways a chance that an untimely failure shonly after the
promise results in a backup p ding without k ledge of

woﬂ( to interleave and flow across the replicas. In a prvpcrly
designed application, this results in system behavior that is
acceptable to the business while being resilient to an increasing
number of system failures.

This paper starts by examining the concepts of fault tolerance and
posits an abstraction for thinking about fault tolerant systems.
Next, section 3 examines how fault tolerant systems have
historically pmwdcd Ihc ability to transparently survive failures
wnhoul special ideration by using h

inting to send the application state to a backup. In section
4, we begm to examine what hlppcns whcn we cannot afford the
latency with the g of state to
the backup and, instead, allow the chnckpmmmg of state to be

the commitment. Hence, nothing is guaranteed!

2) Applications must ensure_eventual consistency [20]. Since
work may be stuck in the primary after a failure and reappear
later, the processing order for work cannot be guaranteed.

Platform designers are struggling to make this ecasier for their

applications. Emerging patterns of eventual umsnsu:ncy and

probabilistic execution may soon yicld a way for appli to

Section 5 ines in much more depth the ways
in which an application must be modified to be true to its
semantics while allowing asynchronous checkpointing of the
application state to its backup. Section 6 looks at a couple of
example applications which offer correct behavior while allowing
delays (i.e. asynchrony) in checkpointing state to the backup. In
secllon 7, we consider the management of resources when the

express requirements for a “looser” form of consistency while
providing availability in the face of ever larger failures. As we
will also point out in this paper, the patterns of

may be dered due to Section 8
examines the relationship between this class of cventual
cons\stem:y and the CAP (Consistency, Availability, and
Theory. Finally, in section 9, we consider

execution and eventual consistency are applicable to
i i d application patterns.

This paper recounts portions of the evolution of these trends,
attempts to show the pattemns that span these changes, and talks
about future directions as we continue to “build on quicksand”.

Permission to make dlglhl or hard copies of all or part of this work for
personal or classroom use is granted without fee pmwdcd that copics are
not made or distril for profit or and that
copics bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
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Copyright 2009 ACM 1-58113-000-0/00/0004...$5.00.

some areas for future work.

2. An Abstraction for Fault Tolerance

In section 2, we discuss the broad ideas required to build a fault
tolerant system. First, we start by describing the external behavior
of the systems we are considering. Next, we describe what it can
mean for these systems to offer transparent fault tolerance and not
require special application consideration to cope with failures.
Then, we quickly consider the issues associated with scalability of
these systems. Finally, we briefly discuss the role of transactions
in the composition of these fault tolerant systems.

CIDR Perspectives 2009

Building on quicksand

by Pat Helland and Dave Campell

[Hel 2009]



"Arguably, all computing really falls into three categories: memories, guesses,
and apologies.

The idea is that everything is done locally with a subset of the global
knowledge. You know what you know when an action is performed. Since you
have only a subset of the knowledge, your actions are really only guesses.

When your knowledge as a replica increases, you may have an “Oh, crap!’
moment. Reconciling your actions (as a replica) with the actions of an evil-twin
of yours may result in recognition that there's a mess to clean up. That may
involve apologizing for your behavior (or the behavior of a replica).”

[Hel 2009]



This part we usually implement assuming
a perfect global knowledge in each node

This part we usually
do not implement

Incomplete &
out-of-order

causes
@ ——> Event i > Decision < | Detection ——
! i causes observes :
updates triggers causes
v i \
Current - . Compensation
------ . Activity < , -
knowledge . updates triggers decision
observes
affects
Memory Guesses Apologies




“In a loosely coupled world choosing
some level of availability over consistency,
It is best to think of all computing as
memories, guesses, and apologies.”

[Hel 2009]



Wrapping up

Distributed systems

Non-determinism of distributed systems changes everything
« Traditional deterministic thinking not sufficient anymore

« Effects of distribution cannot be hidden (or ignored)

Simple problems can be hard in distributed environments

Understand your options and trade-offs (really!)

Think in concepts like memory, guesses and apologies




Complexity and system design
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Systemantics

by John Gall

[Gal 1975]



“If anything can go wrong, it will.” (Murphy's law)

‘Complex systems exhibit unexpected behavior.” (Generalized uncertainty
principle)

"A large system, produced by expanding the dimensions of a smaller system,

n

does not behave like the smaller system.” (Climax design theorem)

[Gal 1975]



‘A complex system that works is invariably found to have evolved from a
simple system that worked. (Working complex systems axiom)

The parallel proposition also appears to be true:

A complex system designed from scratch never works and cannot be made
to work. You have to start over, beginning with a working simple system.”

[Gal 1975]



‘Destiny is largely a set of unquestioned assumptions.”

[Gal 1975]



Cognitive
How Systems Fail CL Technologies.

Laboratory

How Complex Systems Fail
(Being a Short Treatise on the Nature of Failure; How Failure is Evaluated; How Failure is
Attributed to Proximate Cause; and the Resulting New Und ding of Patient Safety)
Richard I. Cook, MD
Cognitive technologies Laboratory
University of Chicago

1) Complex systems are intrinsically hazardous systems.
All of the ir ing sy (e-g portation, healthcare, power generation) are
inherently and unavondably hazardous by the own nature. The frequency of hazard
can be ch d but the processes involved in the system are
themselves intrinsically and meduubly hazardous. It is the presence of these hazards
that drives the creation of defenses against hazard that characterize these systems.

2) Complex systems are heavily and successfully defended against failure.
The high consequences of failure lead over time to the construction of multiple layers of
defense against failure. These defenses include obvious technical components (e.g.
backup systems, “safety” fi of equip ) and human comp (e.g. training,
knowledge) but also a variety of organizati itutional, and latory def
(e.g. policies and procedures, cerhfxcahon, work rules, team trammg) The effect of these
measures is to provide a series of shields that normally divert operations away from
accidents.

3) Catastrophe requires multiple failures - single point failures are not enough..
The array of defenses works. System operations are generally successful. Overt
catastrophic failure occurs when small, apparently innocuous failures join to create
opportunity for a systemic accident. Each of these small failures is necessary to cause
catastrophe but only the combination is sufficient to permit failure. Put another way,
there are many more failure opportunities than overt system accidents. Most initial
failure trajectories are blocked by designed system safety components. Trajectories that
reach the operational level are mostly blocked, usually by practitioners.

4) Complex syst tain changing mixtures of failures latent within them.
The complexity of these sy makes it i possible for them to run without multiple
flaws being present. Because these are individually insufficient to cause failure they are
regarded as minor factors during operations. Eradication of all latent failures is limited
primarily by economic cost but also because it is difficult before the fact to see how such
failures might contribute to an accident. The failures change constantly because of

h

C ging technology, work organization, and efforts to eradicate failures.

ded

5) G 1 t run in deg mode.
A comlla:y lo the preceding point is that complex systems run as broken systems. The
system continues to function because it contains so many redundancies and because
people can make it function, despite the presence of many flaws. After accident reviews
nearly always note that the system has a history of prior ‘proto-accidents’ that nearly
generated catastrophe. Arg that these degraded conditions should have been
recognized before the overt accident are usually predicated on nai ve notions of system
performance. System operations are dynamic, with components (organizational, human,
technical) failing and being replaced continuously.

Copyright © 1998, 1999, 2000 by R.1.Cook, MD, for CtL. Revision D (00.04.21)
Page 1

How complex systems fail

by Richard |. Cook

[Coo 1998]



‘Catastrophe requires multiple failures — single point failures are not
enough.

...] Overt catastrophic failure occurs when small, apparently innocuous failures
join to create opportunity for a systemic accident. Each of these small failures
IS necessary to cause catastrophe but only the combination is sufficient to
permit failure.”

‘Complex systems run in degraded mode.

...] complex systems run as broken systems. The system continues to
function because it contains so many redundancies and because people can
make it function, despite the presence of many flaws.”

[Coo 1998§]



‘Post-accident attribution accident to a ‘root cause’ is fundamentally wrong.
Because overt failure requires multiple faults, there is no isolated ‘cause’ of an
accident. There are multiple contributors to accidents. [...] Indeed, it is the
linking of these causes together that creates the circumstances required for
the accident. Thus, no isolation of the ‘root cause’ of an accident is possible.
The evaluations based on such reasoning as ‘root cause’ do not reflect a
technical understanding of the nature of failure but rather the social, cultural
need to blame specific, localized forces or events for outcomes.”

[Coo 1998]



"Hindsight biases post-accident assessments of human performance.
Knowledge of the outcome makes it seem that events leading to the outcome
should have appeared more salient to practitioners at the time than was
actually the case. This means that ex post facto accident analysis of human

performance is inaccurate.’

‘Safety is a characteristic of systems and not of their components

Safety is an emergent property of systems; it does not reside in a person,
device or department of an organization or system. Safety cannot be
purchased or manufactured; it is not a feature that is separate from the other
components of the system.”

[Coo 1998§]



1o Siluer Bullet

Essence and Accidents of
Software Engineering

Frederick P. Brooks, Jr.

University of North Carolina at Chapel Hill

Tochiand ]

conceptual constructs
is the esserce;
accidental tasks arise
in representing the
constructs in
language. Past
progress has so
reduced the accidental
tasks that future
progress now depends
upon addressing the
essence.

f all the monsters that fill the
O igh f our folklore, none
terrify more than %

throughs—and indeed, I believe such tobe
inconsistent with the nature of soft-

because they tramsform

are

from the familias into horrors, For these,
one secks bullets of siiver that can magic-
ally lay them 1o sest.

The familiar software project, at least as.
seen by the nontechnical manager, has
something of this character; it is usually in-
nocen: and straightforward, but is capable
of becoming a moaster of missed sched-
wles, blown budgets, asd flawed products.
So we hear desperate cries for a silver
bulkt—something to make software costs
drop a8 rapidly as computer hardware
costs do.

But, as we Jook to the horizon of a
decade hence, we see no silver bullet.
There is no single development, in cither
technology or in management technique,
that by itself promises even ome order-of-
magnitude improvement in productivity,
in reliabiity, ia simplicity. In this article, 1
shall try to show why, by examising both
the nature of the software problem and the
propertics of the bullets proposed.

Skepticism s not pessimism, however.
Although we see no startling break-
This arvicle was fiest pablshed in Informarion Proces-
ing %6, ISBN No. 0444300773, H_-J. Kugle, ed.,
Ehevier Scionce Poblibhars BV, (Noad-Hodaad) ©
TFIP 1946,

under way. A disciplined i effc
to develop, propagate, and exploit these
innovations should indeed yield an order-
of-magnitude improvement. There is no
royal road, but there is a road.

The first step toward the management
of discase was replacement of demon
theories and humours theories by the germ
theory. That very step, the beginaing of
hope, in ltself dashed all hopes of magical
solutions. It told workers that progress
would be made stepwise, at great effort,
and that & persistent, unremitting care
would have 1o be paid to a discipline of
cleankness. So it is with software engi-
reering today.

Does it have to be
hard?—Essential
difficulties

Not only are there o silver ballets now
in view, the very nature of software makes.
it unlikely that there will be any—no ia-
ventions that will do for software prod-
uctivity, reliability, and smplicity what
clectronics, tramsistors, and large-scale
integration did for computer hardware,

COMPUTER

No silver bullet

by Frederick P. Brooks, Jr.

[Bro 1986]



‘I divide [the difficulties of software technology] into essence, the difficulties
inherent to the nature of software, and accidents, those difficulties that today
attend its production but are not inherent.”

“Let us consider the inherent properties of this irreducible essence of modern
software systems: complexity, conformity, changeability and invisibility."

[Bro 1986]



Out of the Tar Pit

Ben Moseley Peter Marks
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Abstract

Complexity is the single major difficulty in the successful develop-
ment of large-scale software systems. Following Brooks we distinguish
accidental from essential difficulty, but disagree with his premise that
most lexity r ining in porary sy is essential. We
identify common causes of complexity and discuss general approaches
which can be taken to eliminate them where they are accidental in
nature. To make things more concrete we then give an outline for
a potential complexity-minimizing approach based on functional pro-
gramming and Codd’s relational model of data.

1 Introduction

The “software crisis” was first identified in 1968 [NR69, p70] and in the
intervening decades has deepened rather than abated. The biggest problem
in the develop and mai of large-scale software systems is com-
plexity — large systems are hard to understand. We believe that the major
contributor to this complexity in many systems is the handling of state and
the burden that this adds when trying to analyse and reason about the
system. Other closely related contributors are code volume, and explicit
concern with the flow of control through the system.

The classical ways to approach the difficulty of state include object-
oriented programming which tightly couples state together with related be-
haviour, and functional programming which — in its pure form — eschews
state and side-effects all together. These approaches each suffer from various
(and differing) problems when applied to traditional large-scale systems.

We argue that it is possible to take useful ideas from both and that
— when combined with some ideas from the relational database world —

Out of the tar pit

by Ben Moseley and Peter Marks

[Mos 2006]



‘Complexity is the root cause of the vast majority of problems with software
today. Unreliability, late delivery, lack of security — often even poor
performance in large-scale systems can all be seen as deriving ultimately from
unmanageable complexity. The primary status of complexity as the major
cause of these other problems comes simply from the fact that being able to

understand a system is a prerequisite for avoiding all of them, and of course it
Is this which complexity destroys.”

[Mos 2006]



‘[...] it is our belief that the single biggest remaining cause of complexity in
most contemporary large systems is state, and the more we can do to limit
and manage state, the better.

Control is basically about the order in which things happen. [...] Most
traditional programming languages do force a concern with ordering [...] The
difficulty is that when control is an implicit part of the language [.. ], then every
single piece of program must be understood in that context |.. ]

The final cause of complexity that we want to examine in any detail is sheer
code volume. [...] in most systems complexity definitely does exhibit
nonlinear increase with size (of the code). This non- linearity in turn means
that it's vital to reduce the amount of code to an absolute minimum.”

[Mos 2006]



‘Finally there are other causes |...] All of these other causes come down to the
following three (inter-related) principles:

« Complexity breeds complexity: |...] This covers all complexity introduced as
a result of not being able to clearly understand a system. [...] This is
particularly true in the presence of time pressures.

« Simplicity is Hard: [...] Simplicity can only be attained if it is recognized,
sought and prized.

« Power corrupts: [...] in the absence of language-enforced guarantees
mistakes (and abuses) will happen. [...] The bottom line is that the more
powerful a language (i.e. the more that is possible within the language), the
harder it is to understand systems constructed in it.”

[Mos 2006]



"Hence we define the following two types of complexity:

« Essential Complexity is inherent in, and the essence of, the problem (as
seen by the users).

« Accidental Complexity is all the rest — complexity with which the
development team would not have to deal in the ideal world (e.g.
complexity arising from performance issues and from suboptimal language

and infrastructure).

When it comes to accidental and essential complexity we firmly believe that
the former exists and that the goal of software engineering must be both to
eliminate as much of it as possible, and to assist with the latter.”

[Mos 2006]



Wrapping up

Complexity and system design

« Complexity is hard

« Hard to understand, exhibits unexpected behavior

« Cannot be designed from scratch, but must evolve

« Exhibits complex failure modes

 Distinguish essential and accidental complexity
» Essential complexity is needed to solve the problem

» Accidental complexity is everything else — try hard to avoid it




Closing thought
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‘I think that in this one play [Faust] Goethe has posed a core problem for
modern man — namely: being in possession of the powerful tool of
conscious thought, how to use it without wrecking everything.”

[Gal 2012]
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The Humble Programmer.
by
Edsger W.Dijkstra

As a result of & long sequence of coincidences I entered the programming
profession officially on the first spring morning of 1952 and as far as I have
been able to trace, | was the first Dutchman to do so in my country. In
retrospect the most amazing thing was the slowness with which, at least
in my part of the world, the programming profession emerged, & slowness
which is now hard to believe. But 1 am grateful for two vivid recollections

from that period that establish that slowness beyond any doubt.

After having programmed for some three years, I had a discussion with
A.van Wijngaarden, who was then my boss at the Mathematical Centre in Amsterdam,
8 discussion for which I shall remain grateful to him as long as I live.

The point was that I was supposed to study theoretical physics at the University
of Leiden simultaneously, and as I found the two activities harder and harder
to combine, I had to make up my mind, either to stop programming and become

a real, respectable theoretical physicist, or to carry my study of physics to
a formal completion only, with a minimum of effort, and to become....., yes what?
A programmer? But was that a respectable profession? For after all, what was
programming? Where was the sound body of knowledge that could support it as

an intellectually respectable discipline? I remember quite vividly how I
envied my hardware colleagues, who, when asked about their professional
competence, could at least point out that they knew everything about vacuum
tubes, amplifiers -end the rest, whereas I felt thst, when feced with that
question, I would stand empty-handed. Full of misgivings I knocked on van
Wijngaarden's office door, asking him whether I could “spesk to him for a
moment”; when 1 left his office a number of hours tater, I was another person.
For after having listened to my problems patiently, he agreed that up till
that moment there was not much of a programming discipline, but then he went
on to explain quietly that automatic computers were here to stay, that we
were just at the beginning and could not I be one of the persons called to
make programming a respectable discipline in the years to come? This was a
turning point in my life and I completed my study of physics formally as
quickly as I could. One moral of the above story is, of course, that we must

be very careful when we give advice to younger people: sometimes they follow it!

The humble programmer

by Edsger W. Dijkstra

[Dij 1972]



“We shall do a much better programming job, provided that we will approach
the task with a full appreciation of its tremendous difficulty, provided that we
stick to modest and elegant programming languages, provided that we

respect the intrinsic limitation of the human mind and approach the tasks as
Very Humble Programmers.”

[Dij 1972]



software engineering

“We shall do a much better pregramming job, provided that we will approach
the task with a full appreciation of its tremendous difficulty, provided that we
stick to modest and elegart-pregramming-lanrguages, provided that we

respect the intrinsic limitation of the human miRkd and approach the tasks as
Very Humble Pregrammers.”

7\ fit-for-purpose tools
Software Engineers

[Dij 1972]
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