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Previously on “Resilience” … 



Why resilience? 



It‘s all about production!



Business 

Production 

Availability 



Availability ≔  MTTF
MTTF + MTTR 

MTTF: Mean Time To Failure
MTTR: Mean Time To Recovery 



Traditional stability approach 

Availability ≔  MTTF
MTTF + MTTR 

Maximize MTTF



(Almost) every system is a distributed system


Chas Emerick



The Eight Fallacies of Distributed Computing 


1.   The network is reliable
2.   Latency is zero
3.   Bandwidth is infinite 
4.   The network is secure
5.   Topology doesn't change
6.   There is one administrator 
7.   Transport cost is zero
8.   The network is homogeneous 


Peter Deutsch


https://blogs.oracle.com/jag/resource/Fallacies.html 



A distributed system is one in which the failure
of a computer you didn't even know existed 
can render your own computer unusable. 


Leslie Lamport



Failures in todays complex, distributed and 
interconnected systems are not the exception. 

•  They are the normal case


•  They are not predictable
•  They are not avoidable



Do not try to avoid failures. Embrace them. 



Resilience approach 

Availability ≔  MTTF
MTTF + MTTR 

Minimize MTTR 



resilience (IT) 

the ability of a system to handle unexpected situations 

-  without the user noticing it (best case) 
-  with a graceful degradation of service (worst case) 



Do not fall for the “100% available” trap! 
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… and there is more



•  Recovery & mitigation patterns 

•  More supervision patterns 

•  Architectural patterns

•  Anti-fragility patterns

•  Fault treatment & prevention patterns 




A rich pattern family



(Title music starts & opening credits shown) 



Let’s complete the picture first … 
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Bulkheads


•  Core isolation pattern (a.k.a. “failure units” or “units of mitigation”) 

•  Shaping good bulkheads is extremely hard (pure design issue) 

•  Diverse implementation choices available, e.g., µservice, actor, scs, ...

•  Implementation choice impacts system and resilience design a lot
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Communication paradigm


•  Request-response <-> messaging <-> events 

•  Not a pattern, but heavily influences resilience patterns to be used 

•  Also heavily influences functional bulkhead design 

•  Very fundamental decision which is often underestimated 
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Redundancy 


•  Core resilience concept

•  Applicable to all failure types 

•  Basis for many recovery and mitigation patterns 

•  Often different variants implemented in a system 



Failure types 




•  Crash failure 

•  Omission failure

•  Timing failure 

•  Response failure

•  Byzantine failure



Failure types 




•  Crash failure 

•  Omission failure

•  Timing failure 

•  Response failure

•  Byzantine failure

Usage of redundancy

•  Patterns 

•  Failover 

•  Schemes 
•  Active/Passive
•  Active/Active
•  N+M Redundancy 

•  Implementation examples 
•  Load balancer + health check 

(e.g., HAProxy) 
•  Dynamic routing + health check 

(e.g., Consul, ZooKeeper) 
•  Cluster manager with shared IP  

(e.g., Pacemaker & Corosync) 
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Failure types 




•  Crash failure 

•  Omission failure

•  Timing failure 

•  Response failure

•  Byzantine failure

Usage of redundancy

•  Patterns 

•  Timeout + retry to different replica 
•  Timeout + failover 
•  Backup Request

•  Schemes 
•  Identical replicas 
•  Failover schemes (for failover) 

•  Implementation examples 
•  Client-based routing 
•  Load balancer 
•  Circuit breaker + dynamic routing 



Failure types 




•  Crash failure 

•  Omission failure

•  Timing failure 

•  Response failure

•  Byzantine failure

Usage of redundancy

•  Patterns 

•  Voting 
•  Recovery blocks 
•  Routine exercise

•  Schemes 
•  Identical replicas 
•  Different replicas (recovery blocks) 

•  Implementation examples 
•  Majority based quorum
•  Adaptive weighted sum
•  Synthetic computation 



Failure types 




•  Crash failure 

•  Omission failure

•  Timing failure 

•  Response failure

•  Byzantine failure

Usage of redundancy

•  Patterns 

•  Voting 
•  Recovery blocks 
•  Routine exercise

•  Schemes 
•  Identical replicas 
•  Different replicas (recovery blocks) 

•  Implementation examples 
•  n > 3t quorum
•  Adaptive weighted sum
•  Synthetic computation 
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Retry 


•  Very basic recovery pattern 

•  Recover from omission or other transient errors 

•  Limit retries to minimize extra load on an already loaded resource

•  Limit retries to avoid recurring errors 



Retry example 
// doAction returns true if successful, false otherwise 
boolean doAction(...) { 
    ... 
} 
 
 
// General pattern 
boolean success = false 
int tries = 0; 
while (!success && (tries < MAX_TRIES)) { 
    success = doAction(...); 
    tries++; 
} 
 
 
// Alternative one-retry-only variant 
success = doAction(...) || doAction(...); 



Prevention Detection Core
(Architectural) 

Recovery 

Mitigation 

Treatment 

Retry 

Limit retries 
Rollback

Checkpoint Safe point



Rollback


•  Roll back state and/or execution path to a defined safe state

•  Recover from internal errors caused by external failures 

•  Use checkpoints and safe points to provide safe rollback points 

•  Limit retries to avoid recurring errors 
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Roll-forward 


•  Advance execution past the point of error 

•  Often used as escalation if retry or rollback do not succeed 

•  Not applicable if skipped activity is essential 

•  Use checkpoints and safe points to provide safe roll-forward points 
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Reset 


•  Often used as radical escalation if all other measures failed 

•  Restart service – do not forget to provide a consistent startup state

•  Reset data to a guaranteed consistent state if nothing else helps 

•  Sometimes simply trying to reconnect helps (often forgotten) 
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Failover 


•  Used as escalation if other measures failed or would take too long 

•  Requires redundancy – trades resources for availability 

•  Many implementation variants available, incl. out-of-the-box solutions 

•  Usually implemented as a monitor-dynamic router combination 
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Read repair 


•  Handle response failures due to relaxed temporal constraints 

•  Requires redundancy – trades resources for availability 

•  Decides correct state based on conflicting siblings 

•  Often implemented in NoSQL databases (but not always accessible) 



Read repair example (Riak, Java) 1/2 
public class FooResolver implements ConflictResolver<Foo> { 
    @Override 
    public Foo resolve(List<Foo> siblings) { 
        // Insert your sibling resolution logic here 
    } 
} 

public class Buddy { 
    public String name; 
    public Set<String> nicknames; 
 
    public Buddy(String name, Set<String> nicknames) { 
        this.name = name; 
        this.nicknames = nicknames; 
    } 
} 



Read repair example (Riak, Java) 2/2 
public class BuddyResolver implements ConflictResolver<Buddy> { 
    @Override 
    public Buddy resolve(List<Buddy> siblings) { 
        if (siblings.size == 0) { 
            return null; 
        } else if (siblings.size == 1) { 
            return siblings.get(0); 
        } else { 
            // Name is also used as key. Thus, all siblings have the same name 
            String name = siblings.get(0).name; 
 
            Set<String> mergedNicknames = new HashSet<String>(); 
            for (Buddy buddy : siblings) { 
                mergedNicknames.addAll(buddy.nicknames); 
            } 
 
            return new Buddy(name, mergedNicknames); 
        } 
    } 
} 
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Error Handler 


•  Separate business logic and error handling 

•  Business logic just focuses on getting the task done

•  Error handler focuses on recovering from errors 

•  Easier to maintain – can be extended to structural escalation 
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Fallback


•  Execute an alternative action if the original action fails 

•  Basis for most mitigation patterns 

•  Fail silently – silently ignore the error and continue processing 

•  Default value – return a predefined default value if an error occurs 



Fail silently example (Hystrix, Java) 1/2
public class FailSilentlyCommand extends HystrixCommand<String> { 
    private static final String COMMAND_GROUP = "default"; 
    private final boolean preCondition; 
 
    public FailSilentlyCommand(boolean preCondition) { 
        super(HystrixCommandGroupKey.Factory.asKey(COMMAND_GROUP)); 
        this.preCondition = preCondition; 
    } 
 
    @Override 
    protected String run() throws Exception { 
        if (!preCondition) 
            throw new RuntimeException((”Action failed")); 
        return ”I am a result"; 
    } 
 
    @Override 
    protected String getFallback() { 
        return null;  // Turn into silent failure 
    } 
} 



Fail silently example (Hystrix, Java) 2/2
@Test 
public void shouldSucceed() { 
    FailSilentlyCommand command = new FailSilentlyCommand(true); 
    String s = command.execute(); 
 
    assertEquals(”I am a result", s); 
} 
 
 
@Test 
public void shouldFailSilently() { 
    FailSilentlyCommand command = new FailSilentlyCommand(false); 
    String s = ”Dummy"; 
    try { 
        s = command.execute(); 
    } catch (Exception e) { 
        fail("Did not fail silently"); 
    } 
    assertNull(s); 
} 



Default value example (Hystrix, Java) 1/2
public class DefaultValueCommand extends HystrixCommand<String> { 
    private static final String COMMAND_GROUP = "default”; 
    private final boolean preCondition; 
 
    public DefaultValueCommand(boolean preCondition) { 
        super(HystrixCommandGroupKey.Factory.asKey(COMMAND_GROUP)); 
        this.preCondition = preCondition; 
    } 
 
    @Override 
    protected String run() throws Exception { 
        if (!preCondition) 
            throw new RuntimeException((”Action failed")); 
        return ”I am a smart result"; 
    } 
 
    @Override 
    protected String getFallback() { 
        return ”I am a default value";  // Return default value if action fails 
    } 
} 



Default value example (Hystrix, Java) 2/2
@Test 
public void shouldSucceed() { 
    DefaultValueCommand command = new DefaultValueCommand(true); 
    String s = command.execute(); 
 
    assertEquals(”I am a smart result", s); 
} 
 
 
@Test 
public void shouldProvideDefaultValue () { 
    DefaultValueCommand command = new DefaultValueCommand(false); 
    String s = null; 
    try { 
        s = command.execute(); 
    } catch (Exception e) { 
        fail("Did not return default value"); 
    } 
    assertEquals(”I am a default value", s); 
} 
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Queues for resources 


•  Protect resource from temporary overload situations 

•  Limit queue size to limit latency at longer-lasting overload 

•  Finish work in progress – Create pushback on the callers 

•  Fresh work before stale – Discard old entries 
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Shed Load 


•  Use if overload will lead to unacceptable throughput of resource

•  Shed requests in order to keep throughput of resource acceptable

•  Shed load at periphery – Minimize impact on resource itself

•  Usually combined with monitor to watch load of resource
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Share Load 


•  Use if overload will lead to unacceptable throughput of resource

•  Share load between (added) resources to keep throughput good 

•  Minimize amount of synchronization needed between resources 

•  Usually combined with monitor to watch load of resource(s) 
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Deferrable work


•  Maximize resources for online request processing under high load 

•  Pause or slow down routine and batch jobs 

•  Provide a means to pause routine and batch jobs from outside

•  Alternatively use a scheduler with dynamic resource allocation 



Deferrable work example 1/2 
// Do or wait variant 
<init batch> 
while(<more to process>) { 
    int load = getLoad(); 
    if (load > THRESHOLD) { 
        waitFixedDuration(); 
    } else { 
        <process next batch of work> 
    } 
} 
 
void waitFixedDuration() { 
    Thread.sleep(DELAY);  // try-catch left out for better readability 
} 



Deferrable work example 2/2 
// Adaptive load variant 
<init batch> 
while(<more to process>) { 
    waitLoadBased(); 
    <process next batch of work> 
} 
 
void waitLoadBased() { 
    int load = getLoad(); 
    long delay = calcDelay(load); 
    Thread.sleep(delay);  // try-catch left out for better readability 
} 
 
long calcDelay(int load) {  // Simple example implementation 
    if (load < THRESHOLD) { 
        return 0L; 
    } 
    return (load – THRESHOLD) * DELAY_FACTOR; 
} 
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Marked data 


•  Avoid repeated and/or spreading errors due to erroneous data 

•  Use if time or information to correct data immediately is missing 

•  Mark data as being erroneous – check flag before processing data 

•  Use routine maintenance job to correct data 
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Routine maintenance


•  Reduce system entropy – keep preventable errors from occurring 

•  Especially important if errors were only mitigated, not corrected 

•  Check system periodically and fix detected faults and errors 

•  Balance benefits, costs and additional system load 
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Spread the news 


•  Pro-actively spread information about changes in system state

•  Use a gossip or epidemic protocol for robustness and efficiency 

•  Can also be used for data reconciliation 

•  Balance benefits, costs and additional network load 
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Backup request


•  Send request to multiple workers (optionally a bit offset) 

•  Use quickest reply and discard all other responses 

•  Prevents latent responses (or at least reduces probability) 

•  Requires redundancy – trades resources for availability 
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Anti-fragility


•  Avoid fragility caused by homogenization and standardization 

•  Protect against disastrous failures by using diverse solutions 

•  Protect against cumulating effects by introducing jitter 

•  Balance risks, benefits and added costs and efforts carefully 



Prevention Detection Core
(Architectural) 

Recovery 

Mitigation 

Treatment 

Routine
maintenance

Backup request

Anti-fragility

Diversity Jitter 

Error 
injection 

Spread the news 

Anti-entropy 



Error injection 


•  Make resilient software design sustainable

•  Inject errors at runtime and observe how the system reacts 

•  Can also be used to detect yet unknown failure modes 

•  Make sure to inject errors of all types 



•  Chaos Monkey 

•  Chaos Gorilla 

•  Chaos Kong 

•  Latency Monkey 

•  Compliance Monkey 

•  Security Monkey 

•  Janitor Monkey 

•  Doctor Monkey 


https://github.com/Netflix/SimianArmy
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Towards a pattern language … 



Decisions to make

•  General decisions 

•  Bulkhead type
•  Communication paradigm

•  Decisions per failure scenario (repeat) 
•  Error detection on node & system level 
•  Recovery/mitigation mechanism
•  Supporting treatment mechanism
•  Supporting prevention mechanism

•  Complementing decisions 
•  Complementing redundancy mechanism(s) 
•  Complementing architectural patterns 
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Ongoing  Create and refine system design and functional decomposition. Functionally decouple bulkheads 
(A good functional decomposition on business level is the prerequisite for an effective resilience) 
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Wrap-up 


•  Today’s systems are distributed 

•  Failures are not avoidable
•  Failures are not predictable

•  Resilient software design needed 

•  Rich pattern language 

•  Start with core system properties 
•  Choose patterns based on failure scenarios 

•  Complement with careful functional design 
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Prentice Hall, 2nd Edition, 2006 

4.  Hystrix Wiki,  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5.  Uwe Friedrichsen, Patterns of resilience, 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Do not avoid failures. Embrace them! 
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