
Towards a resilience pattern language
or how to get resilient software design right

Uwe Friedrichsen (codecentric AG) – Berlin Expert Days – Berlin, 16. September 2016

@ufried
Uwe Friedrichsen | uwe.friedrichsen@codecentric.de | http://slideshare.net/ufried | http://ufried.tumblr.com

Previously on “Resilience” …

Why resilience?

It‘s all about production!

Business

Production

Availability

Availability ≔ MTTF
MTTF + MTTR

MTTF: Mean Time To Failure
MTTR: Mean Time To Recovery

Traditional stability approach

Availability ≔ MTTF
MTTF + MTTR

Maximize MTTF

(Almost) every system is a distributed system

Chas Emerick

The Eight Fallacies of Distributed Computing

1. The network is reliable
2. Latency is zero
3. Bandwidth is infinite
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is zero
8. The network is homogeneous

Peter Deutsch

https://blogs.oracle.com/jag/resource/Fallacies.html

A distributed system is one in which the failure
of a computer you didn't even know existed
can render your own computer unusable.

Leslie Lamport

Failures in todays complex, distributed and
interconnected systems are not the exception.

•  They are the normal case

•  They are not predictable
•  They are not avoidable

Do not try to avoid failures. Embrace them.

Resilience approach

Availability ≔ MTTF
MTTF + MTTR

Minimize MTTR

resilience (IT)

the ability of a system to handle unexpected situations

-  without the user noticing it (best case)
-  with a graceful degradation of service (worst case)

Do not fall for the “100% available” trap!

Isolation

Latency Control

Fail Fast

Circuit Breaker

Timeouts

Fan out &
quickest reply

Bounded Queues

Shed Load

Bulkheads

Loose Coupling

Asynchronous
Communication

Event-Driven

Idempotency

Self-ContainmentRelaxed
Temporal

Constraints

Location
Transparency

Stateless

Supervision

Monitor

Complete
Parameter
Checking

Error Handler

Escalation

… and there is more

•  Recovery & mitigation patterns

•  More supervision patterns

•  Architectural patterns

•  Anti-fragility patterns

•  Fault treatment & prevention patterns

A rich pattern family

(Title music starts & opening credits shown)

Let’s complete the picture first …

Isolation

Latency Control

Loose Coupling

Supervision

Core
(Architectural)

Detection Treatment Prevention

Recovery

Mitigation

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Isolation

Loose Coupling

Latency Control

Node level

Supervision

System level

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Isolation Redundancy

Communication
paradigm

Supporting
patterns

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Supporting
patterns

Communication
paradigm

Redundancy Isolation

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Supporting
patterns

Communication
paradigm

Redundancy Isolation

Bulkhead

Bulkheads

•  Core isolation pattern (a.k.a. “failure units” or “units of mitigation”)

•  Shaping good bulkheads is extremely hard (pure design issue)

•  Diverse implementation choices available, e.g., µservice, actor, scs, ...

•  Implementation choice impacts system and resilience design a lot

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Supporting
patterns

Communication
paradigm

Redundancy Isolation

Communication paradigm

•  Request-response <-> messaging <-> events

•  Not a pattern, but heavily influences resilience patterns to be used

•  Also heavily influences functional bulkhead design

•  Very fundamental decision which is often underestimated

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Supporting
patterns

Communication
paradigm

Redundancy Isolation

Redundancy

•  Core resilience concept

•  Applicable to all failure types

•  Basis for many recovery and mitigation patterns

•  Often different variants implemented in a system

Failure types

•  Crash failure

•  Omission failure

•  Timing failure

•  Response failure

•  Byzantine failure

Failure types

•  Crash failure

•  Omission failure

•  Timing failure

•  Response failure

•  Byzantine failure

Usage of redundancy

•  Patterns

•  Failover

•  Schemes
•  Active/Passive
•  Active/Active
•  N+M Redundancy

•  Implementation examples
•  Load balancer + health check 

(e.g., HAProxy)
•  Dynamic routing + health check 

(e.g., Consul, ZooKeeper)
•  Cluster manager with shared IP  

(e.g., Pacemaker & Corosync)

Failure types

•  Crash failure

•  Omission failure

•  Timing failure

•  Response failure

•  Byzantine failure

Usage of redundancy

•  Patterns

•  Retry (to different replica)
•  Failover
•  Backup Request

•  Schemes
•  Identical replicas
•  Failover schemes (for failover)

•  Implementation examples
•  Client-based routing
•  Load balancer
•  Leaky bucket + dynamic routing

Failure types

•  Crash failure

•  Omission failure

•  Timing failure

•  Response failure

•  Byzantine failure

Usage of redundancy

•  Patterns

•  Timeout + retry to different replica
•  Timeout + failover
•  Backup Request

•  Schemes
•  Identical replicas
•  Failover schemes (for failover)

•  Implementation examples
•  Client-based routing
•  Load balancer
•  Circuit breaker + dynamic routing

Failure types

•  Crash failure

•  Omission failure

•  Timing failure

•  Response failure

•  Byzantine failure

Usage of redundancy

•  Patterns

•  Voting
•  Recovery blocks
•  Routine exercise

•  Schemes
•  Identical replicas
•  Different replicas (recovery blocks)

•  Implementation examples
•  Majority based quorum
•  Adaptive weighted sum
•  Synthetic computation

Failure types

•  Crash failure

•  Omission failure

•  Timing failure

•  Response failure

•  Byzantine failure

Usage of redundancy

•  Patterns

•  Voting
•  Recovery blocks
•  Routine exercise

•  Schemes
•  Identical replicas
•  Different replicas (recovery blocks)

•  Implementation examples
•  n > 3t quorum
•  Adaptive weighted sum
•  Synthetic computation

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Supporting
patterns

Communication
paradigm

Redundancy Isolation

Stateless Idempotency

Escalation

Structural Behavioral

Zero downtime
deployment

Location
transparency

Relaxed
temporal

constraints

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Node level

Supporting
patterns System level

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Node level

Supporting
patterns System level

Timeout

Circuit breaker
Complete
parameter
checking

Checksum

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Node level

Supporting
patterns System level

Monitor Watchdog

Heartbeat
Acknowledgement

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Node level

Supporting
patterns System level

Voting

Synthetic
transaction

Leaky bucketRoutine checks

Health
check

Fail fast

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Retry

Limit retries

Retry

•  Very basic recovery pattern

•  Recover from omission or other transient errors

•  Limit retries to minimize extra load on an already loaded resource

•  Limit retries to avoid recurring errors

Retry example
// doAction returns true if successful, false otherwise
boolean doAction(...) {
 ...
}

// General pattern
boolean success = false
int tries = 0;
while (!success && (tries < MAX_TRIES)) {
 success = doAction(...);
 tries++;
}

// Alternative one-retry-only variant
success = doAction(...) || doAction(...);

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Retry

Limit retries
Rollback

Checkpoint Safe point

Rollback

•  Roll back state and/or execution path to a defined safe state

•  Recover from internal errors caused by external failures

•  Use checkpoints and safe points to provide safe rollback points

•  Limit retries to avoid recurring errors

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Retry

Limit retries
Rollback

Checkpoint Safe point

Roll-forward

Roll-forward

•  Advance execution past the point of error

•  Often used as escalation if retry or rollback do not succeed

•  Not applicable if skipped activity is essential

•  Use checkpoints and safe points to provide safe roll-forward points

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Retry

Limit retries
Rollback Roll-forward

Checkpoint Safe point

Restart

Reconnect

Data Reset

Startup
consistency

Reset

Reset

•  Often used as radical escalation if all other measures failed

•  Restart service – do not forget to provide a consistent startup state

•  Reset data to a guaranteed consistent state if nothing else helps

•  Sometimes simply trying to reconnect helps (often forgotten)

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Retry

Limit retries
Rollback

Restart

Roll-forward

Reconnect

Checkpoint Safe point

Data Reset

Startup
consistency

Reset

Failover

Failover

•  Used as escalation if other measures failed or would take too long

•  Requires redundancy – trades resources for availability

•  Many implementation variants available, incl. out-of-the-box solutions

•  Usually implemented as a monitor-dynamic router combination

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Retry

Limit retries
Rollback

Restart

Roll-forward

Reconnect

Checkpoint Safe point

Data Reset

Startup
consistency

Failover

Reset
Read repair

Read repair

•  Handle response failures due to relaxed temporal constraints

•  Requires redundancy – trades resources for availability

•  Decides correct state based on conflicting siblings

•  Often implemented in NoSQL databases (but not always accessible)

Read repair example (Riak, Java) 1/2
public class FooResolver implements ConflictResolver<Foo> {
 @Override
 public Foo resolve(List<Foo> siblings) {
 // Insert your sibling resolution logic here
 }
}

public class Buddy {
 public String name;
 public Set<String> nicknames;

 public Buddy(String name, Set<String> nicknames) {
 this.name = name;
 this.nicknames = nicknames;
 }
}

Read repair example (Riak, Java) 2/2
public class BuddyResolver implements ConflictResolver<Buddy> {
 @Override
 public Buddy resolve(List<Buddy> siblings) {
 if (siblings.size == 0) {
 return null;
 } else if (siblings.size == 1) {
 return siblings.get(0);
 } else {
 // Name is also used as key. Thus, all siblings have the same name
 String name = siblings.get(0).name;

 Set<String> mergedNicknames = new HashSet<String>();
 for (Buddy buddy : siblings) {
 mergedNicknames.addAll(buddy.nicknames);
 }

 return new Buddy(name, mergedNicknames);
 }
 }
}

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Retry

Limit retries
Rollback

Restart

Roll-forward

Reconnect

Checkpoint Safe point

Data Reset

Startup
consistency

Failover

Read repair
Reset

Error handler

Error Handler

•  Separate business logic and error handling

•  Business logic just focuses on getting the task done

•  Error handler focuses on recovering from errors

•  Easier to maintain – can be extended to structural escalation

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Retry

Limit retries
Rollback

Restart

Roll-forward

Reconnect

Checkpoint Safe point

Data Reset

Startup
consistency

Failover

Read repair

Error handler

Reset

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Fallback

Fail silently

Alternative action

Default value

Fallback

•  Execute an alternative action if the original action fails

•  Basis for most mitigation patterns

•  Fail silently – silently ignore the error and continue processing

•  Default value – return a predefined default value if an error occurs

Fail silently example (Hystrix, Java) 1/2
public class FailSilentlyCommand extends HystrixCommand<String> {
 private static final String COMMAND_GROUP = "default";
 private final boolean preCondition;

 public FailSilentlyCommand(boolean preCondition) {
 super(HystrixCommandGroupKey.Factory.asKey(COMMAND_GROUP));
 this.preCondition = preCondition;
 }

 @Override
 protected String run() throws Exception {
 if (!preCondition)
 throw new RuntimeException((”Action failed"));
 return ”I am a result";
 }

 @Override
 protected String getFallback() {
 return null; // Turn into silent failure
 }
}

Fail silently example (Hystrix, Java) 2/2
@Test
public void shouldSucceed() {
 FailSilentlyCommand command = new FailSilentlyCommand(true);
 String s = command.execute();

 assertEquals(”I am a result", s);
}

@Test
public void shouldFailSilently() {
 FailSilentlyCommand command = new FailSilentlyCommand(false);
 String s = ”Dummy";
 try {
 s = command.execute();
 } catch (Exception e) {
 fail("Did not fail silently");
 }
 assertNull(s);
}

Default value example (Hystrix, Java) 1/2
public class DefaultValueCommand extends HystrixCommand<String> {
 private static final String COMMAND_GROUP = "default”;
 private final boolean preCondition;

 public DefaultValueCommand(boolean preCondition) {
 super(HystrixCommandGroupKey.Factory.asKey(COMMAND_GROUP));
 this.preCondition = preCondition;
 }

 @Override
 protected String run() throws Exception {
 if (!preCondition)
 throw new RuntimeException((”Action failed"));
 return ”I am a smart result";
 }

 @Override
 protected String getFallback() {
 return ”I am a default value"; // Return default value if action fails
 }
}

Default value example (Hystrix, Java) 2/2
@Test
public void shouldSucceed() {
 DefaultValueCommand command = new DefaultValueCommand(true);
 String s = command.execute();

 assertEquals(”I am a smart result", s);
}

@Test
public void shouldProvideDefaultValue () {
 DefaultValueCommand command = new DefaultValueCommand(false);
 String s = null;
 try {
 s = command.execute();
 } catch (Exception e) {
 fail("Did not return default value");
 }
 assertEquals(”I am a default value", s);
}

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Fallback

Fail silently

Alternative action

Default value

Queue for
resources

Bounded queue

Finish work
in progress

Fresh work
before stale

Queues for resources

•  Protect resource from temporary overload situations

•  Limit queue size to limit latency at longer-lasting overload

•  Finish work in progress – Create pushback on the callers

•  Fresh work before stale – Discard old entries

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Fallback

Fail silently

Alternative action

Default value

Queue for
resources

Bounded queue

Finish work
in progress

Fresh work
before stale

Shed load

Shed Load

•  Use if overload will lead to unacceptable throughput of resource

•  Shed requests in order to keep throughput of resource acceptable

•  Shed load at periphery – Minimize impact on resource itself

•  Usually combined with monitor to watch load of resource

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Fallback

Fail silently

Alternative action

Default value

Shed load

Queue for
resources

Bounded queue

Finish work
in progress

Fresh work
before stale

Share load

Statically Dynamically

Share Load

•  Use if overload will lead to unacceptable throughput of resource

•  Share load between (added) resources to keep throughput good

•  Minimize amount of synchronization needed between resources

•  Usually combined with monitor to watch load of resource(s)

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Fallback

Fail silently

Alternative action

Default value

Shed load Share load

Queue for
resources

Bounded queue

Finish work
in progress

Fresh work
before staleStatically Dynamically

Deferrable work

Deferrable work

•  Maximize resources for online request processing under high load

•  Pause or slow down routine and batch jobs

•  Provide a means to pause routine and batch jobs from outside

•  Alternatively use a scheduler with dynamic resource allocation

Deferrable work example 1/2
// Do or wait variant
<init batch>
while(<more to process>) {
 int load = getLoad();
 if (load > THRESHOLD) {
 waitFixedDuration();
 } else {
 <process next batch of work>
 }
}

void waitFixedDuration() {
 Thread.sleep(DELAY); // try-catch left out for better readability
}

Deferrable work example 2/2
// Adaptive load variant
<init batch>
while(<more to process>) {
 waitLoadBased();
 <process next batch of work>
}

void waitLoadBased() {
 int load = getLoad();
 long delay = calcDelay(load);
 Thread.sleep(delay); // try-catch left out for better readability
}

long calcDelay(int load) { // Simple example implementation
 if (load < THRESHOLD) {
 return 0L;
 }
 return (load – THRESHOLD) * DELAY_FACTOR;
}

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Fallback

Fail silently

Alternative action

Default value

Shed load Share load

Queue for
resources

Bounded queue

Finish work
in progress

Fresh work
before stale

Marked data

Statically Dynamically

Deferrable work

Marked data

•  Avoid repeated and/or spreading errors due to erroneous data

•  Use if time or information to correct data immediately is missing

•  Mark data as being erroneous – check flag before processing data

•  Use routine maintenance job to correct data

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Fallback

Fail silently

Alternative action

Default value

Shed load Share load

Marked data

Queue for
resources

Bounded queue

Finish work
in progress

Fresh work
before staleStatically Dynamically

Deferrable work

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Let sleeping dogs lie

Small releases Hot deployments

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Routine
maintenance

Anti-entropy

Routine maintenance

•  Reduce system entropy – keep preventable errors from occurring

•  Especially important if errors were only mitigated, not corrected

•  Check system periodically and fix detected faults and errors

•  Balance benefits, costs and additional system load

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Routine
maintenance

Spread the news

Anti-entropy

Spread the news

•  Pro-actively spread information about changes in system state

•  Use a gossip or epidemic protocol for robustness and efficiency

•  Can also be used for data reconciliation

•  Balance benefits, costs and additional network load

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Routine
maintenance

Backup request

Spread the news

Anti-entropy

Backup request

•  Send request to multiple workers (optionally a bit offset)

•  Use quickest reply and discard all other responses

•  Prevents latent responses (or at least reduces probability)

•  Requires redundancy – trades resources for availability

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Routine
maintenance

Backup request

Anti-fragility

Diversity Jitter

Spread the news

Anti-entropy

Anti-fragility

•  Avoid fragility caused by homogenization and standardization

•  Protect against disastrous failures by using diverse solutions

•  Protect against cumulating effects by introducing jitter

•  Balance risks, benefits and added costs and efforts carefully

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Routine
maintenance

Backup request

Anti-fragility

Diversity Jitter

Error
injection

Spread the news

Anti-entropy

Error injection

•  Make resilient software design sustainable

•  Inject errors at runtime and observe how the system reacts

•  Can also be used to detect yet unknown failure modes

•  Make sure to inject errors of all types

•  Chaos Monkey

•  Chaos Gorilla

•  Chaos Kong

•  Latency Monkey

•  Compliance Monkey

•  Security Monkey

•  Janitor Monkey

•  Doctor Monkey

https://github.com/Netflix/SimianArmy

Prevention Detection Core
(Architectural)

Recovery

Mitigation

Treatment

Routine
maintenance

Backup request

Anti-fragility

Diversity Jitter

Error
injection

Spread the news

Anti-entropy

Towards a pattern language …

Decisions to make

•  General decisions

•  Bulkhead type
•  Communication paradigm

•  Decisions per failure scenario (repeat)
•  Error detection on node & system level
•  Recovery/mitigation mechanism
•  Supporting treatment mechanism
•  Supporting prevention mechanism

•  Complementing decisions
•  Complementing redundancy mechanism(s)
•  Complementing architectural patterns

Core
(Architectural)

Detection Treatment Prevention

Recovery

Mitigation

Isolation Redundancy

Communication
paradigm

Supporting
patterns

Node level

System level

1

Decide core
system

properties

2 Choose patterns per failure scenario
(Have the different failure types in mind) 3

Decide
complementing

patterns

Ongoing Create and refine system design and functional decomposition. Functionally decouple bulkheads
(A good functional decomposition on business level is the prerequisite for an effective resilience)

Core
(Architectural)

Detection Treatment Prevention

Recovery

Mitigation

Isolation Redundancy

Communication
paradigm

Supporting
patterns

Node level

System level

Example: Erlang (Akka)

Monitor Messaging

Actor

Escalation Heartbeat

Restart
(Let it crash)

Hot deployments

Core
(Architectural)

Detection Treatment Prevention

Recovery

Mitigation

Isolation Redundancy

Communication
paradigm

Supporting
patterns

Node level

System level

Example: Netflix

Monitor
Request/
response

(Micro)Service

Retry

Zero downtime
deployment

(Canary releases)

Fallback

Share load

Bounded queue

Timeout Circuit
breaker

Several
variants

Error injection

Core
(Architectural)

Detection Treatment Prevention

Recovery

Mitigation

Isolation Redundancy

Communication
paradigm

Supporting
patterns

Node level

System level

What is your pattern language?

Wrap-up

•  Today’s systems are distributed

•  Failures are not avoidable
•  Failures are not predictable

•  Resilient software design needed

•  Rich pattern language

•  Start with core system properties
•  Choose patterns based on failure scenarios

•  Complement with careful functional design

Further reading

1.  Michael T. Nygard, Release It!,  

Pragmatic Bookshelf, 2007

2.  Robert S. Hanmer,  
Patterns for Fault Tolerant Software, Wiley, 2007

3.  Andrew Tanenbaum, Marten van Steen,  
Distributed Systems – Principles and Paradigms,  
Prentice Hall, 2nd Edition, 2006

4.  Hystrix Wiki,  
https://github.com/Netflix/Hystrix/wiki

5.  Uwe Friedrichsen, Patterns of resilience, 
http://de.slideshare.net/ufried/patterns-of-resilience

Do not avoid failures. Embrace them!

@ufried
Uwe Friedrichsen | uwe.friedrichsen@codecentric.de | http://slideshare.net/ufried | http://ufried.tumblr.com

