software factory

ABSTURZ UNERWU

Muster fur fehlertolerante Syste

Uwe Friedrichsen — Berlin Expert Days



Name: Uwe Friedrichsen

Professional experience: Several years ...

Focus areas:

— Making teams, projects and systems
successful — with a special focus on
architecture and agility

— Holistic thinking, connect ideas and
concepts, make people think

— New technologies & concepts

Position: CTO at codecentric AG




AGENDA

Motivation

Terms and definitions
Fault tolerant mindset
Design for fault tolerance
More stuff ...

summary

codecentric AG 05.04.2013 3



fault toler‘wt all? B

It didn't affect me all the years before — so why should it affect me now?

AT

-
-




>

R
48
s
‘s

AL
"y
|

In Scale up:

o,
o1 "l'.\'-r = i
N '3\ ‘,IJ\ el
A . ol ~ - N

v aa

0

M

) e,
P

{ B
-}4

;.'-
ALY

‘ . :i\ B
4t
i

you ha.\{ to deal with fa". ':_.j' tolerance yo

nto

"

A

/ A £
i ‘“ L
E . ¢
k- &

2 . N 47 . :‘
your infrastructure, but with

A £ X \~.,
) ‘R &
‘¥ - . ',
i ! : b
| »
\ ' |

urself in your ap

;

, (
ik Y1)

,,’\

X

4y
L WAY
Y,

B

Nl

(F 3

Vs
plications.

g




AGENDA

Motivation

Terms and definitions
Fault tolerant mindset
Design for fault tolerance
More stuff ...

summary

codecentric AG 05.04.2013 7



FAULT, ERROR & FAILURE

Fault

Defect that can cause an error

Can be caused by incorrect specifications, designs, coding, ...
Error

Incorrect behaviour that can cause failures

Can be detected (from inside the system) before it becomes a
failure

Manifestation of faults
Failure
Behaviour that does not conform to the specification

Observable from outside the system (i.e. by users])
Caused by errors

® Fault = Error = Failure

" Error detection and handling is a core effort in fault
tolerant system desgin

codecentric AG

Notruf

wenn Alarm
betatiat




FAILURE CLASSES

Crash failure

System crashes, but worked correctly up to then

Typical failure situation in a scale out scenario
Omission failure

System does not respond to a request

Also typical failure — often caused by infrastructure failures
Timing failure

System does not respond within a specified time frame

Often caused by system overload - also important for scale out
Response failure

Response is wrong

Harder to handle automatically — often requires code changes
Byzantine (arbitrary) failure

System creates arbitrary reponses (at arbitrary points in time]

Very hard to handle — requires complex handling procedures

codecentric AG




MTTF, MTTR & MTBF

MTTF

Mean Time To Failure
Average time from start of operation until first failure

MTTR

Mean Time To Repair/Recovery
Average time to restore a failing component to operation

MTBF

Mean Time Between Failure
MTBF = MTTF + MTTR

" MTTF usually cannot be influenced (for one node)
" Yet, availability must not be compromised
" Thus, MTTR usually is the important factor

codecentric AG




AGENDA

Motivation

Terms and definitions
Fault tolerant mindset
Design for fault tolerance
More stuff ...

summary

codecentric AG 05.04.2013 12



P T
AR AN

[- RS

Strive for Simplicity

The system should be made as simple as possible (- but no simpler)




- .

Lesign for Failure «*

VWhatever can go wrong will go wrong

¥




ly

ign incrementa

Des




AGENDA

Motivation

Terms and definitions
Fault tolerant mindset
Design for fault tolerance
More stuff ...

summary

codecentric AG 05.04.2013 17



A SIMPLE TAXONOMY FOR FAULT TOLERANT DESIGN

[Fault tolerant architecture}

Improves error handling !
v

Core error handling flow

Error recovery
Error detection < > Fault treatment
Error mitigation

A
' Reduces error risk

Fault prevention

codecentric AG




UNITS OF MITIGATION

Domain

Architectural pattern

When to use
To prevent the system to fail as a whole
Whenever possible

How to implement

Decouple units/components as much as possible
Implement error checks and barriers at unit boundaries
Let units fail silently if an error is detected

Related Concepts

Redundancy, failover, error handler, ...

Tradeoffs

Finding of good units is a non-trivial design task

Balance between added value and added complexity needs to be
kept

codecentric AG



REDUNDANCY

Domain
Architectural pattern
When to use
The system must not become unavailable
Minimizing MTTR (from an external perspective] is important

How to implement

Provide the component/unit of mitigation several times

Align your solution to the required level of availability

Use infrastructure means if available and suitable
Related Concepts

Failover, recovery blocks, routine excercise, ...

Tradeoffs

Balance costs and level of availability carefully

Pure software redundancy needs extra implementation effort

codecentric AG



ESCALATION

Domain
Architectural pattern

When to use
Error processing or mitigation important for system to work
Error cannot be treated successfully on local level

How to implement

Design different levels of error handling, each with a more
complete view of the system

Plan for more drastic measures to handle error at each level
Use infrastructure built-in propagation techniques if available
Related Concepts
Let it crash, limit retries, rollback, failover, reset, ...
Tradeoffs
Finding and implementing a good escalation strategy is complex
Decision when to escalate is often hard

codecentric AG




A SIMPLE TAXONOMY FOR FAULT TOLERANT DESIGN

Fault tolerant architecture

Improves error handling !

i Core error handling flow

Error recovery
[Er‘r"or detection]< > Fault treatment
Error mitigation

A
' Reduces error risk

Fault prevention

codecentric AG



MONITOR

Domain

Error detection
When to use

Continuous availability is important

Failures and crashes need to be detected quickly
How to implement

Create an independent monitor component

Let the monitor share as few resources as possible with the
monitored components

Check if out-of-the-box solutions are sufficient, use if applicable
Related Concepts

Acknowledgement, heartbeat, watchdog, supervisor-worker,
Tradeoffs

Complexity and load of monitored component usually raised

Finding good metrics and escalation thresholds is often hard

codecentric AG




DATA VERSIONING

Domain
Error detection
When to use
Always in a scale-out environment
How to implement
Add a version indicator to each single entity

When accessing related entities always check if the versions
match

Update the elder entity on the fly to match the newer entity if
possible, accept inconsistency otherwise

Related Concepts

Vector clocks, BASE, replication, quorum, routine maintenance

Tradeoffs

Must be implemented explicitly (which is a lot of work]
Sometimes hard to figure out how to repair the outdated entity

codecentric AG



ROUTINE MAINTENANCE

Domain

Fault prevention/Error detection
When to use

oystem needs to run failure-free for long periods
Availabilty is very important
How to implement

Create background jobs that check components and data

Start jobs automatically if possible, otherwise by an operator

Combine findings incrementally with (correcting) fault handlers
Related Concepts

Automation, routine audits, routine exercise, ...

Tradeoffs

Can create a lot of information that is hard to handle manually
Cost/benefit analysis is usually needed

codecentric AG



A SIMPLE TAXONOMY FOR FAULT TOLERANT DESIGN

Fault tolerant architecture

improves error handllng Core error handling flow

Error recovery
Error detection Fault treatment
Error mitigation

Reduces error risk

Fault pr‘eventlon

codecentric AG




ERROR HANDLER

Domain
Error recovery
When to use

An error has been detected and needs to be handled

The system should stay as simple and maintainable as possible
How to implement

Delegate work to a dedicated error handler if an error occurs

Encapsulate all error recovery related code in the error handler

Shift the error handler to a different system part if suitable
Related Concepts

Fault observer, restart, rollback, roll-forward, final handling, ...
Tradeoffs

Needs explicit design upfront

Just using catch-blocks or other programming-language-provided
constructs is tempting

codecentric AG



RETRY, ROLLBACK, ROLL-FORWARD, RESTART, ...

Domain
Error recovery
When to use

An error has occured and the system needs to recover

Depending on the severity of the error and data different
strategies can be applied

How to implement
Retry if it seems to be a transient error (but limit retries)
Rollback to a checkpoint if you have the data available

Roll-Forward to a reference point if you dont have the data, the
time or the error is sticky

Use restart if nothing else helps (the error is really hard]
Related Concepts
Escalation, checkpoint, reference point, limit retries, ...

Tradeoffs

Escalation strategy needs to be balanced

codecentric AG



FAILOVER

Domain
Error recovery
When to use
An error has occured and the system needs to recover quickly
Fault handling will take too long and compromise availability
How to implement
Provide component redundant
Switch to spare component in case of error
Use infrastructure solutions if suitable
Related Concepts
Redundancy, escalation, restart, ...

Tradeoffs

Different failover strategies (hot standby, cold standby, ...) affect
costs and effort — cost/benefit analysis usually required

codecentric AG



A SIMPLE TAXONOMY FOR FAULT TOLERANT DESIGN

Fault tolerant architecture

Improves error handling !

v

Core error handling flow

Error detection

Error recovery

Error mitigation

Fault treatment

A
' Reduces error risk

Fault prevention

codecentric AG




SHED LOAD

Domain

Error mitigation
When to use

System must keep up service even under high load

Long response times are worse than rejecting a request upfront
How to implement

Monitor system load and response times

Implement gatekeeper at system entry

Let gatekeeper reject requests if monitored response times and
load increase

Related Concepts

Share load, finish work in progress, fresh work before stale, ...

Tradeoffs

Consequences of dropping requests need to be considered well

codecentric AG




MARKED DATA

Domain

Error mitigation
When to use

System must work reliable even in presence of corrupted data
Corrupted data cannot be fixed when detected
How to implement

Flag data to mark it as faulty

Make sure flagged data is not used by rest of the system
Use common markers if suitable (NaN, null, ...)
Related Concepts

Routine audits, error correcting codes, ...

Tradeoffs

Ilgnoring marked data is a lot of manual implementation effort
Hard to implement a posteriori into an existing system

codecentric AG




A SIMPLE TAXONOMY FOR FAULT TOLERANT DESIGN

Fault tolerant architecture

Improves error handling !

i Core error handling flow

Error recovery
Error detection < >(Fault tr*eatment}
Error mitigation

A
' Reduces error risk

Fault prevention

codecentric AG




SMALL PATCHES

Domain
Fault treatment
When to use
Fault correction needs a system update (i.e. software patch)

Risk of introducing new faults by the update should be as small
as possible

How to implement

Deliver as small patches as possible

Use continuous delivery techniques

Automate your delivery chain to keep update effort low
Related Concepts

Continuous delivery, let sleeping dogs lie, root cause analysis, ...
Tradeoffs

Without a solid delivery chain automation small patches will be
extremely expensive and error prone

codecentric AG




AGENDA

Motivation

Terms and definitions
Fault tolerant mindset
Design for fault tolerance
More stuff ...

summary

codecentric AG 05.04.2013 36



VWHAT | DIDN'T TALK ABOUT ...

Lots of patterns
Maintenance interface, someone in charge, fault correlation,
voting, checksums, leaky bucket container, quarantine,
data reset, overload toolboxes, queue for resources,
slow it down, fresh work before stale, add jitter, ...
Recovery oriented computing
Microreboot
Undo/Redo
Crash-only software
Highly scalable systems
Many complementary patterns and priciples
And many more ...
Fault tolerance in other areas (real-time, extreme conditions)
Detection of and recovery from byzantine errors
Theoretical foundations, advanced techniques and algorithms

codecentric AG




MORE TO READ ...

[1] Robert S. Hanmer,
Patterns for fault tolerant software,
Wiley, 2007
[2] The Berkeley/Stanford Recovery-Oriented Computing

(ROC) Project, http://roc.cs.berkeley.edu/

[3] James Hamilton, On Designing and Deploying
Internet-Scale Services, 215t LISA Conference 2007

[4] Zaipeng Xie, Hongyu Sun and Kewal Saluja,
A survey of software fault tolerance techniques,
http: //www.pld.ttu.ee/IAFO030/Paper_4.pdf

[D] Michael R. Lyu (Ed.), Handbook of Software Reliability
Engineering, McGraw-Hill 1996, http://www.
freebookzone.com/goto. php?bkcls=se&bkidx=81 &lkidx="1

[6] Andrew Tanenbaum, Marten van Steen,
Distributed Systems. Principles and Paradigms,
Prentice Hall, 2nd Edition, 2006

codecentric AG



AGENDA

Motivation

Terms and definitions
Fault tolerant mindset
Design for fault tolerance
More stuff ...

Summary

codecentric AG 05.04.2013 39



Scale out and distributed systems
are becoming mainstream

ocale out and distributed systems
require explicit fault tolerant design

Infrastructure provided fault
tolerance does not suffice anymore

Right mindset I1s essential




Uwe Friedrichsen
CTO

codecentric AG
Merscheider Stralle 1
42699 Solingen

uwe.friedrichsen@codecentric.de
tel +49 (0) 212 . 23 36 28 10
fax +49 (0) 212 . 23 36 28 79
mobil +49 (0] 160 . 90 62 66 00

@ufried
www.codecentric.de
blog.codecentric.de
www. meettheexperts.de




QUESTIONS & DISCUSSIONS




