Microservices.
Worauf es wirklich ankommt.

Leon Rosenberg
@dvayanu
Bed Con 2015

Who am |

Leon Rosenberg, Java Developer, Architect,
OpenSource and DevOps Evangelist.

1997 Started programming with Java
2000 Started building portals

2007 Started MoSKito

°PAYBACK
OO0

L PARSHIP com

oooooooo ight for you

scoutzs

A you. nsodl

Was sind die typischen Probleme und wie

|6st man sie”? Wie baut man elastische und

robuste Microservices-Anwendungen, wie

monitored man sie, und was passiert wenn
es kracht.

SO what are we talking
about?

In short, the microservice architectural style is an
approach to developing a single application as a
suite of small services, each running in its own
process and communicating with lightweight
mechanisms, often an HTTP resource AP

http://martinfowler.com/articles/microservices.html

A service-oriented architecture (SOA) is an architectural
pattern in computer software design in which
application components provide services to other
components via a communications protocol, typically
over a network. The principles of service-orientation are
independent of any vendor, product or technology.

https://en.wikipedia.org/wiki/Service-oriented_architecture

https://en.wikipedia.org/wiki/Service-oriented_architecture

Microservices = SOA - ESB

Architecture

® Paradigms
® Communication

® Conventions

Paradigms

® Design by ... (responsibility)
® Dumb vs. Smart Data
® Communication

® [rades

Business Logic

depends on depends on
Presentation Logic Persistence
depends on

Rendering and Ul

Communication

® Synchronous vs Asynchronous
® 1:1 1:n, n:Mm
® Direction

® Cycles

Proplems

® Distributed transactions
® Too many calls (performance)
® Repetitions

® Communication overhead

Distributed transactions

® Manual rollback.

® Special services (OT19).

® Allow it (order of modification).
® Consistency checks.

® Handle it when you need to.

oo many calls

® Combine calls.

® Execute calls in parallel.

Repetition

Frontend User |= Service User.
Same steps are repeated over and over again.
Separate business and presentation logic.

Provide a service like client-side API| for frontend,
Presentation API.

Presentation tier

Remoting

Application tier

3rd party (NTFS, CIFS, EXT3, TCP/IP)

Storage / DB tier

Delivery Layer

Rendering and Ul

Presentation Logic

Architecture

A4

Business Logic

Persistence

Resources

loadbalancer, apache, squid

spring-mvc/struts/. ..

api

services, processes

DAOs, Exporter, Importer, FS-Writer

Postgresql, Mongo, FS

Caches

® Object cache.

® Expiry/Proxy/Client-side cache.
® Query cache.

® Negative cache.

® Partial cache.

® |ndex.

Just one service?

® Single point of failure
® Bottleneck

® Generally considered extremely uncool

Multiple Instances

® Failing strategy

® Routing

Failing

® Falil fast.
® Retry once/twice/...
® Failover to next node (and return or stay).

® Failover for xxx seconds.

Routing / Balancing

® Round-Robin
® Sharding
® Sticky

Combinations

® Round-Robin / Repeat once
® Failover for 60 seconds and return

® Mod 3 - Sharded with Repeat twice and
fallover to next node

Non-Mod-able

® Problem: Who creates new data”
® Do-what-|-did.
® Separate data segments.

® Proxy - Service.

Example

® Assume we have a User Object we need
upon each request at least once, but up to
several hundreds (mailbox, favorite lists etc),

with assumed mid value of 20.

® Assume we have an incoming traffic of 1000
requests per second.

Nalve approacnh

UserService User
getUser userld
getUserByUserName fF------- >| userName
updateUser regDate

<<use>>

createUser IastLogin

<<create>>
\

| UserSer;/iceDAO |
dao
"~
| UserServicelmpl |

1.1 getService

client:Class

1.2 getUser

LookupUtility

1.1 createFacade

facade:UserService

network:

y

service:UserService

1.2.1 getUser

dao:UserServiceDAO

1.2.1.1 getUser

E Database

Nalve approacnh

e The DB will have to handle 20.000 requests
per second.

e Average response time must be 0,05
milliseconds.

o .. Tricky ...

1000%20=20.000

20.000

1.1 getService

client:Class

1.2 getUser

LookupUtility

1.1 createFacade

facade:UserService

network:

A

service:UserService

1.2.1 getUser

dao:UserServiceDAO

1.2.1.1 getUser 20000

% Database

3
4

Some optimization

1

UserService User
4 _| getUser userld
getUserByUserName |------- > userName
updateUser regDate
<<use>> .
createUser lastLogin

proxied \
\
LocalUserServiceProxy | :
proxied
cache \
cache 1 <<create>>
\
\
| UserServiceDAO |
dao
1
UserServicelmpl 1
Q 1 he rnameCache
nullCashe
SoftReferenceCache
1
ExpiryCache
w PermanentCache

Cache
getFromCache fF------- e(;:lzcheable <}l
putinCache 'g—'

| <<Uuse>>

1.1 getService
client:Class LookupUtility

1.2 getUser
1.1 createFacade

facade:UserService service:LocalUserServiceProxy

1.2.1 getFromCache
2.3 putinCache

1.2.2 getUser

proxied:UserService cache:Cache
‘\
\
\
\
network ‘\
\
\ 1.2.2.1 getFromCache
\ 1.2.2.3 putinCache
A
service:RemoteUserServiceProxy cache:Cache

1.2.2.2 getUser

proxied:UserService

T

|
|
network |
|
I 1.2.2.2.1 getFromCache
; 1.2.2.2.4 putinCache cache:Cache
service:UserService
1.2.2.2.2 getFromCache negative:Cache

1.2.2.2.3 getUser 1.2.2.2.3.1 getUser

dao:UserServiceDAO H Database

Optimized approach

® | ocalServiceProxy can handle approx.
20% of the requests.

® \\Vi
e

'h Mod 5, 5 Instances of

moteServiceProxy will handle 16000/s

requests or 3200/s each. They will

cache away 90% of the requests.

® 1000 remaining requests per second will

arr

ive at the UserService.

Optimized approach (I

® Permanent cache of the user service will be
able to cache away 98% of the requests.

® NullUser Cache will cache away 1% of the
original requests.

® Max 16 Requests per second will reach to the
DB, demanding a response time of 62,5ms --
> Plece of cake.
And no changes in client code at alll

1000*20=20.000

1.1 getService

client:Class

1.2 getUser

LookupUtility

1.1 createFacade

facade:UserService

service:LocalUserServiceProxy

1.2.2 getUser

proxied:UserService

network

1.

o o

cache:Cache

\ 1.2.2.1 getFromCache
1.2.2.3 putinCache

service:RemoteUserServiceProxy

1.2.2.2 getUser

proxied:UserService

T

iZapancans 4000 stop here

cache:Cache I 4400 StOP hel"e

in different instances

|
|
network |
|
I 1.2.2.2.1 getFromCache
; 1.2.2.2.4 putinCache cache:Cache I 5 68 sto P h ere
service:UserService
1.2.2.2.2 getFromCache negative:Cache I 6 Sto P h ere
1.2.2.2.3 getUser 1.2.2.2.3.1 getUser

dao:UserServiceDAO

H Database

|6 make it to DB

=l

Partytime !

Monitoring (APM)

® \Who needs it anyway?

Production

Static pool

Pix pool

Exporter

console

neofonie

omniture

attivio

incoming

request

L oadbalancer (pair)

guest pool

webgbO |

registry

bizO |

webgb02

biz02

biz03

Database (pair)

dataO|l

data02

biz04

member pool

webO| | web02 = web03 | = webl2

business logic servers pool

biz00
biz09 hotstandby

FileSystem Storage

ExtAPI pool
Admin pool

Connector
heidelpay

clickandbuy
parship
attivio

neofonie

_

MoSKito Control @ Last refresh: 2013-11-13T17:43:40,655 @ Next refresh in 49 seconds Mute for 60 minutes Mute
© TV
D Status
@ TV
ul| Charts
= History
@0
2 0
0
®3
= History
Timestamp Name Status change
2013-11-13T15:56:05,064 web01.prod = @
2013-11-13T15:54:15,014 web02.prod @]
2013-11-13T15:39:14,595 web02.prod o
2013-11-13T14:56:03,455 web02.prod : O
2013-11-13T14:56:03,411 web01.prod O
2013-11-13T13:56:01,784 web02.prod O

39

Top 5 things people are
doing wrong with Application
Performance Management

O

You don't have any

Application Performance Management.
At all.

A

You measure room temperature
to find out If the patient has fever.

3

You have APM, but you only ook
at 1t, when the system crashes,
and switch it off when its alive.

2

You don't care about business key

figures and don't have any in your
APM.

Everyone has it's own
Application Performance Management.
And no-one speaks to each other.

und wenn es kracht?

Oliver’s First Rule of Concurrency

With enough concurrent requests any condition In
code marked with ,Can’t happen” -
will happen.

7
R\ 5

Oliver's Second Rule of Concurrency

After you fixed the ,can’t happen” part, and you
are sure, that it ,REALLY can't happen now" -
't will happen again.

7
R\ 5

a user will always

® Outsmart you.

® ind IHE Iinput data that crashes you.
® Hit F5.

So, what do | do?

® Accept possibility of failure.
® Handle failures fast.
® Minimize the effect.

® Build a chaos monkey!

,
%

I'hank you

Tech Stack
1\/[%&(1’[0 http://www.moskito.org https://github.com/anotheria/moskito
6*3 http://www.distributeme.org https://github.com/anotheria/distributeme

http://blog.anotheria.net/msk/the-complete-moskito-integration-guide-step- |/

Human Stack

http://leon-rosenberg.net (@dvayanu http://www.speakerdeck.com/dvayanu

http://www.moskito.org
http://www.moskito.org
http://blog.anotheria.net/msk/the-complete-moskito-integration-guide-step-1/
https://github.com/anotheria/moskito
https://github.com/anotheria/moskito
http://leon-rosenberg.net
http://www.speakerdeck.com/dvayanu
https://twitter.com/dvayanu

