
Microservices. 
 Worauf es wirklich ankommt.

Leon Rosenberg
@dvayanu

Bed Con 2015

Who am I

• Leon Rosenberg, Java Developer, Architect,
OpenSource and DevOps Evangelist.

• 1997 Started programming with Java

• 2000 Started building portals

• 2007 Started MoSKito

Was sind die typischen Probleme und wie
löst man sie? Wie baut man elastische und
robuste Microservices-Anwendungen, wie
monitored man sie, und was passiert wenn

es kracht.

So what are we talking
about?

In short, the microservice architectural style is an
approach to developing a single application as a
suite of small services, each running in its own
process and communicating with lightweight

mechanisms, often an HTTP resource API

http://martinfowler.com/articles/microservices.html

A service-oriented architecture (SOA) is an architectural
pattern in computer software design in which

application components provide services to other
components via a communications protocol, typically
over a network. The principles of service-orientation are

independent of any vendor, product or technology.

https://en.wikipedia.org/wiki/Service-oriented_architecture

https://en.wikipedia.org/wiki/Service-oriented_architecture

Microservices = SOA - ESB

Architecture

• Paradigms

• Communication

• Conventions

Paradigms

• Design by … (responsibility)

• Dumb vs. Smart Data

• Communication

• Trades

Communication

• Synchronous vs Asynchronous

• 1:1, 1:n, n:m

• Direction

• Cycles

Problems

• Distributed transactions

• Too many calls (performance)

• Repetitions

• Communication overhead

Distributed transactions

• Manual rollback.

• Special services (OTS).

• Allow it (order of modification).

• Consistency checks.

• Handle it when you need to.

Too many calls

• Combine calls.

• Execute calls in parallel.

Repetition

• Frontend User != Service User.

• Same steps are repeated over and over again.

• Separate business and presentation logic.

• Provide a service like client-side API for frontend,
Presentation API.

Storage / DB tier

Presentation tier

Application tier

Architecture

Delivery Layer

Rendering and UI

Presentation Logic

Business Logic

Persistence

Resources

Remoting

3rd party (NTFS, CIFS, EXT3, TCP/IP)

loadbalancer, apache, squid

spring-mvc/struts/…

api

services, processes

DAOs, Exporter, Importer, FS-Writer

Postgresql, Mongo, FS

Caches

• Object cache.

• Expiry/Proxy/Client-side cache.

• Query cache.

• Negative cache.

• Partial cache.

• Index.

Just one service?

• Single point of failure

• Bottleneck

• Generally considered extremely uncool

Multiple Instances

• Failing strategy

• Routing

Failing

• Fail fast.

• Retry once/twice/…

• Failover to next node (and return or stay).

• Failover for xxx seconds.

Routing / Balancing

• Round-Robin

• Sharding

• Sticky

Combinations

• Round-Robin / Repeat once

• Failover for 60 seconds and return

• Mod 3 - Sharded with Repeat twice and
failover to next node

Non-Mod-able

• Problem: Who creates new data?

• Do-what-I-did.

• Separate data segments.

• Proxy - Service.

Example

• Assume we have a User Object we need
upon each request at least once, but up to
several hundreds (mailbox, favorite lists etc),
with assumed mid value of 20.

• Assume we have an incoming traffic of 1000
requests per second.

userId
userName
regDate
lastLogin

User
getUser
getUserByUserName
updateUser
createUser

UserService

<<use>>

UserServiceImpl

UserServiceDAO

<<create>>

1

1
dao

Naive approach

client:Class LookupUtility
1.1 getService

service:UserService

facade:UserService

1.1.1 createFacade
1.2 getUser

dao:UserServiceDAO
1.2.1 getUser

Database

1.2.1.1 getUser

network

Naive approach

• The DB will have to handle 20.000 requests
per second.

• Average response time must be 0,05
milliseconds.

• … Tricky …

client:Class LookupUtility
1.1 getService

service:UserService

facade:UserService

1.1.1 createFacade
1.2 getUser

dao:UserServiceDAO
1.2.1 getUser

Database

1.2.1.1 getUser

network

1000*20=20.000

20.000
20.000

usernameCache

nullCache

cache

userId
userName
regDate
lastLogin

User
getUser
getUserByUserName
updateUser
createUser

UserService

LocalUserServiceProxy RemoteUserServiceProxy

getFromCache
putInCache

Cache
getId
Cacheable

expiryDuration
ExpiryCache

PermanentCache

<<use>>

1

1

proxied

proxied

SoftReferenceCache

<<use>>

1

1

1

1

UserServiceImpl

2

1

1

1

cache
cache

UserServiceDAO

<<create>>

1

1
dao

Some optimization

client:Class LookupUtility
1.1 getService

service:UserService

facade:UserService

1.1.1 createFacade
1.2 getUser

dao:UserServiceDAO

1.2.2.2.1 getFromCache

Database

1.2.2.2.3.1 getUser

network

service:LocalUserServiceProxy

proxied:UserService cache:Cache

1.2.1 getFromCache

1.2.2 getUser

service:RemoteUserServiceProxy

network

cache:Cache

1.2.2.1 getFromCache

proxied:UserService

1.2.2.2 getUser

cache:Cache

negative:Cache1.2.2.2.2 getFromCache

1.2.2.2.3 getUser

1.2.2.2.4 putInCache

1.2.2.3 putInCache

1.2.3 putInCache

Optimized approach
• LocalServiceProxy can handle approx.

20% of the requests.

• With Mod 5, 5 Instances of
RemoteServiceProxy will handle 16000/s
requests or 3200/s each. They will
cache away 90% of the requests.

• 1600 remaining requests per second will
arrive at the UserService.

Optimized approach (II)

• Permanent cache of the user service will be
able to cache away 98% of the requests.

• NullUser Cache will cache away 1% of the
original requests.

• Max 16 Requests per second will reach to the
DB, demanding a response time of 62,5ms --
> Piece of cake.  
 And no changes in client code at all!

client:Class LookupUtility
1.1 getService

service:UserService

facade:UserService

1.1.1 createFacade
1.2 getUser

dao:UserServiceDAO

1.2.2.2.1 getFromCache

Database

1.2.2.2.3.1 getUser

network

service:LocalUserServiceProxy

proxied:UserService cache:Cache

1.2.1 getFromCache

1.2.2 getUser

service:RemoteUserServiceProxy

network

cache:Cache

1.2.2.1 getFromCache

proxied:UserService

1.2.2.2 getUser

cache:Cache

negative:Cache1.2.2.2.2 getFromCache

1.2.2.2.3 getUser

1.2.2.2.4 putInCache

1.2.2.3 putInCache

1.2.3 putInCache

1000*20=20.000

4000 stop here

14400 stop here
in different instances

1568 stop here

16 stop here

16 make it to DB

Partytime !

Monitoring (APM)

• Who needs it anyway?

Production

Loadbalancer (pair)

Static pool
guest pool member pool

 business logic servers pool

Database (pair) FileSystem Storage

Exporter

web01webgb01 webgb02 web02 web03 web12

biz01 biz02 biz03 biz04 biz09
biz00

hotstandby

data01 data02

registry

console

neofonie

omniture

Pix pool

incoming request

Connector
heidelpay

clickandbuy

ExtAPI pool

Admin pool
...

...

parship

attivio

profile data

user data

user data

usage data
profiles

profiles

payment

payment

neofonie search
attivioprofile data

39

Top 5 things people are
doing wrong with Application
Performance Management

5

You don’t have any
Application Performance Management.

At all.

4

You measure room temperature
to find out if the patient has fever.

3

You have APM, but you only look
at it, when the system crashes,
and switch it off when its alive.

2

You don’t care about business key
figures and don’t have any in your

APM.

1

Everyone has it’s own
Application Performance Management.

And no-one speaks to each other.

und wenn es kracht?

und wenn es kracht?

Oliver’s First Rule of Concurrency

With enough concurrent requests any condition in
code marked with „Can’t happen“ -  

will happen.

Oliver’s Second Rule of Concurrency

After you fixed the „can’t happen“ part, and you
are sure, that it „REALLY can’t happen now“ -  

It will happen again.

a user will always

• Outsmart you.

• Find THE input data that crashes you.

• Hit F5.

So, what do I do?

• Accept possibility of failure.

• Handle failures fast.

• Minimize the effect.

• Build a chaos monkey!

Thank you
Tech Stack

http://www.moskito.org

http://www.distributeme.org

http://blog.anotheria.net/msk/the-complete-moskito-integration-guide-step-1/

https://github.com/anotheria/moskito

https://github.com/anotheria/distributeme

Human Stack

http://leon-rosenberg.net http://www.speakerdeck.com/dvayanu@dvayanu

http://www.moskito.org
http://www.moskito.org
http://blog.anotheria.net/msk/the-complete-moskito-integration-guide-step-1/
https://github.com/anotheria/moskito
https://github.com/anotheria/moskito
http://leon-rosenberg.net
http://www.speakerdeck.com/dvayanu
https://twitter.com/dvayanu

